include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6}*1296e
if this polytope has a name.
Group : SmallGroup(1296,2985)
Rank : 4
Schlafli Type : {2,6,6}
Number of vertices, edges, etc : 2, 54, 162, 54
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,6,6}*432c, {2,6,6}*432d
6-fold quotients : {2,3,6}*216
9-fold quotients : {2,6,6}*144a, {2,6,6}*144b, {2,6,6}*144c
18-fold quotients : {2,3,6}*72, {2,6,3}*72
27-fold quotients : {2,2,6}*48, {2,6,2}*48
54-fold quotients : {2,2,3}*24, {2,3,2}*24
81-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(19,28)(20,29);;
s2 := ( 3,23)( 4,21)( 5,22)( 6,29)( 7,27)( 8,28)( 9,26)(10,24)(11,25)(15,18)
(16,19)(17,20);;
s3 := ( 3, 6)( 4, 8)( 5, 7)(10,11)(12,15)(13,17)(14,16)(19,20)(21,24)(22,26)
(23,25)(28,29);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s3*s1*s2*s3*s2*s1*s2*s3*s2*s3*s1*s2*s3*s2*s1*s2*s3*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(29)!(1,2);
s1 := Sym(29)!(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(19,28)(20,29);
s2 := Sym(29)!( 3,23)( 4,21)( 5,22)( 6,29)( 7,27)( 8,28)( 9,26)(10,24)(11,25)
(15,18)(16,19)(17,20);
s3 := Sym(29)!( 3, 6)( 4, 8)( 5, 7)(10,11)(12,15)(13,17)(14,16)(19,20)(21,24)
(22,26)(23,25)(28,29);
poly := sub<Sym(29)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s3*s1*s2*s3*s2*s1*s2*s3*s2*s3*s1*s2*s3*s2*s1*s2*s3*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2*s1*s2 >;
to this polytope