include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytopes of Type {2,6,6}
This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 4)
There are 53 polytopes of this type in this atlas. They are :
- {2,6,6}*144a (SmallGroup(144,192)) (Universal)
- {2,6,6}*144b (SmallGroup(144,192)) (Universal)
- {2,6,6}*144c (SmallGroup(144,192)) (Universal)
- {2,6,6}*192 (SmallGroup(192,1537)) (Universal)
- {2,6,6}*216 (SmallGroup(216,102)) (Universal)
- {2,6,6}*240 (SmallGroup(240,189)) (Universal)
- {2,6,6}*384a (SmallGroup(384,17948)) (Universal)
- {2,6,6}*384b (SmallGroup(384,20070)) (Universal)
- {2,6,6}*432a (SmallGroup(432,545)) (Universal)
- {2,6,6}*432b (SmallGroup(432,545)) (Universal)
- {2,6,6}*432c (SmallGroup(432,545)) (Universal)
- {2,6,6}*432d (SmallGroup(432,759)) (Universal)
- {2,6,6}*480a (SmallGroup(480,1186)) (Universal)
- {2,6,6}*480b (SmallGroup(480,1186)) (Universal)
- {2,6,6}*480c (SmallGroup(480,1186)) (Universal)
- {2,6,6}*576a (SmallGroup(576,8659)) (Universal)
- {2,6,6}*576b (SmallGroup(576,8659)) (Universal)
- {2,6,6}*648a (SmallGroup(648,299)) (Universal)
- {2,6,6}*648b (SmallGroup(648,299)) (Universal)
- {2,6,6}*672 (SmallGroup(672,1254)) (Universal)
- {2,6,6}*768a (SmallGroup(768,1088539)) (Universal)
- {2,6,6}*768b (SmallGroup(768,1088539)) (Universal)
- {2,6,6}*768c (SmallGroup(768,1089093)) (Universal)
- {2,6,6}*768d (SmallGroup(768,1089093)) (Universal)
- {2,6,6}*768e (SmallGroup(768,1089108)) (Universal)
- {2,6,6}*960 (SmallGroup(960,11355)) (Universal)
- {2,6,6}*1152a (SmallGroup(1152,157582)) (Universal)
- {2,6,6}*1152b (SmallGroup(1152,157582)) (Universal)
- {2,6,6}*1152c (SmallGroup(1152,157852)) (Universal)
- {2,6,6}*1152d (SmallGroup(1152,157852)) (Universal)
- {2,6,6}*1152e (SmallGroup(1152,157852)) (Universal)
- {2,6,6}*1200a (SmallGroup(1200,980)) (Universal)
- {2,6,6}*1200b (SmallGroup(1200,980)) (Universal)
- {2,6,6}*1296a (SmallGroup(1296,1860)) (Universal)
- {2,6,6}*1296b (SmallGroup(1296,1860)) (Universal)
- {2,6,6}*1296c (SmallGroup(1296,1862)) (Universal)
- {2,6,6}*1296d (SmallGroup(1296,1862)) (Universal)
- {2,6,6}*1296e (SmallGroup(1296,2985)) (Universal)
- {2,6,6}*1296f (SmallGroup(1296,2985)) (Universal)
- {2,6,6}*1296g (SmallGroup(1296,2985)) (Universal)
- {2,6,6}*1320 (SmallGroup(1320,134)) (Universal)
- {2,6,6}*1344a (SmallGroup(1344,11684)) (Universal)
- {2,6,6}*1344b (SmallGroup(1344,11684)) (Universal)
- {2,6,6}*1344c (SmallGroup(1344,11684)) (Universal)
- {2,6,6}*1440a (SmallGroup(1440,5842)) (Universal)
- {2,6,6}*1440b (SmallGroup(1440,5849)) (Universal)
- {2,6,6}*1440c (SmallGroup(1440,5849)) (Universal)
- {2,6,6}*1440d (SmallGroup(1440,5849)) (Universal)
- {2,6,6}*1728a (SmallGroup(1728,46116)) (Universal)
- {2,6,6}*1728b (SmallGroup(1728,46116)) (Universal)
- {2,6,6}*1728c (SmallGroup(1728,47874)) (Universal)
- {2,6,6}*1920 (SmallGroup(1920,240977)) (Universal)
- {2,6,6}*1944 (SmallGroup(1944,941)) (Universal)