include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6}*1296f
if this polytope has a name.
Group : SmallGroup(1296,2985)
Rank : 4
Schlafli Type : {2,6,6}
Number of vertices, edges, etc : 2, 54, 162, 54
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,6,6}*432a, {2,6,6}*432d
6-fold quotients : {2,6,3}*216
9-fold quotients : {2,6,6}*144a, {2,6,6}*144b, {2,6,6}*144c
18-fold quotients : {2,3,6}*72, {2,6,3}*72
27-fold quotients : {2,2,6}*48, {2,6,2}*48
54-fold quotients : {2,2,3}*24, {2,3,2}*24
81-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 9)( 7,11)( 8,10)(13,14)(15,18)(16,20)(17,19)(22,23)(24,27)
(25,29)(26,28);;
s2 := ( 3, 6)( 4, 7)( 5, 8)(12,25)(13,26)(14,24)(15,22)(16,23)(17,21)(18,28)
(19,29)(20,27);;
s3 := ( 3,12)( 4,13)( 5,14)( 6,15)( 7,16)( 8,17)( 9,18)(10,19)(11,20);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s1*s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s3*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(29)!(1,2);
s1 := Sym(29)!( 4, 5)( 6, 9)( 7,11)( 8,10)(13,14)(15,18)(16,20)(17,19)(22,23)
(24,27)(25,29)(26,28);
s2 := Sym(29)!( 3, 6)( 4, 7)( 5, 8)(12,25)(13,26)(14,24)(15,22)(16,23)(17,21)
(18,28)(19,29)(20,27);
s3 := Sym(29)!( 3,12)( 4,13)( 5,14)( 6,15)( 7,16)( 8,17)( 9,18)(10,19)(11,20);
poly := sub<Sym(29)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s1*s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s3*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2*s1*s2 >;
to this polytope