Polytope of Type {2,12,9}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,12,9}*1296b
if this polytope has a name.
Group : SmallGroup(1296,3492)
Rank : 4
Schlafli Type : {2,12,9}
Number of vertices, edges, etc : 2, 36, 162, 27
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   27-fold quotients : {2,4,3}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 7, 8)(10,11)(12,21)(13,23)(14,22)(15,24)(16,26)(17,25)(18,27)
(19,29)(20,28);;
s2 := ( 3, 4)( 6,22)( 7,21)( 8,23)( 9,13)(10,12)(11,14)(15,28)(16,27)(17,29)
(18,19)(24,25);;
s3 := ( 3, 6)( 4,15)( 5,24)( 7,12)( 8,21)(10,18)(11,27)(13,16)(14,25)(17,22)
(20,28)(23,26);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s1*s2*s3*s1*s2*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(29)!(1,2);
s1 := Sym(29)!( 4, 5)( 7, 8)(10,11)(12,21)(13,23)(14,22)(15,24)(16,26)(17,25)
(18,27)(19,29)(20,28);
s2 := Sym(29)!( 3, 4)( 6,22)( 7,21)( 8,23)( 9,13)(10,12)(11,14)(15,28)(16,27)
(17,29)(18,19)(24,25);
s3 := Sym(29)!( 3, 6)( 4,15)( 5,24)( 7,12)( 8,21)(10,18)(11,27)(13,16)(14,25)
(17,22)(20,28)(23,26);
poly := sub<Sym(29)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s3*s1*s2*s3*s1*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2 >; 
 

to this polytope