include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {9,12,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,12,2}*1296b
if this polytope has a name.
Group : SmallGroup(1296,3492)
Rank : 4
Schlafli Type : {9,12,2}
Number of vertices, edges, etc : 27, 162, 36, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
27-fold quotients : {3,4,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4,19)( 5,21)( 6,20)( 7,10)( 8,12)( 9,11)(13,25)(14,27)(15,26)
(17,18)(23,24);;
s1 := ( 1, 4)( 2,22)( 3,13)( 5,19)( 6,10)( 8,25)( 9,16)(11,24)(12,15)(14,21)
(17,27)(20,23);;
s2 := ( 1,16)( 2,17)( 3,18)( 4,13)( 5,14)( 6,15)( 7,10)( 8,11)( 9,12)(19,25)
(20,26)(21,27);;
s3 := (28,29);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s0*s1*s2*s0*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(29)!( 2, 3)( 4,19)( 5,21)( 6,20)( 7,10)( 8,12)( 9,11)(13,25)(14,27)
(15,26)(17,18)(23,24);
s1 := Sym(29)!( 1, 4)( 2,22)( 3,13)( 5,19)( 6,10)( 8,25)( 9,16)(11,24)(12,15)
(14,21)(17,27)(20,23);
s2 := Sym(29)!( 1,16)( 2,17)( 3,18)( 4,13)( 5,14)( 6,15)( 7,10)( 8,11)( 9,12)
(19,25)(20,26)(21,27);
s3 := Sym(29)!(28,29);
poly := sub<Sym(29)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1 >;
to this polytope