Polytope of Type {3,6,4,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,4,6}*1296
if this polytope has a name.
Group : SmallGroup(1296,3528)
Rank : 5
Schlafli Type : {3,6,4,6}
Number of vertices, edges, etc : 3, 9, 18, 18, 9
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,2,4,6}*432
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)(22,25)
(23,27)(24,26)(29,30)(31,34)(32,36)(33,35)(38,39)(40,43)(41,45)(42,44)(47,48)
(49,52)(50,54)(51,53)(56,57)(58,61)(59,63)(60,62)(65,66)(67,70)(68,72)(69,71)
(74,75)(76,79)(77,81)(78,80);;
s1 := ( 1, 5)( 2, 4)( 3, 6)( 7, 8)(10,14)(11,13)(12,15)(16,17)(19,23)(20,22)
(21,24)(25,26)(28,32)(29,31)(30,33)(34,35)(37,41)(38,40)(39,42)(43,44)(46,50)
(47,49)(48,51)(52,53)(55,59)(56,58)(57,60)(61,62)(64,68)(65,67)(66,69)(70,71)
(73,77)(74,76)(75,78)(79,80);;
s2 := ( 4, 7)( 5, 8)( 6, 9)(10,28)(11,29)(12,30)(13,34)(14,35)(15,36)(16,31)
(17,32)(18,33)(19,55)(20,56)(21,57)(22,61)(23,62)(24,63)(25,58)(26,59)(27,60)
(40,43)(41,44)(42,45)(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)(53,68)
(54,69)(76,79)(77,80)(78,81);;
s3 := (28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)
(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)
(49,76)(50,77)(51,78)(52,79)(53,80)(54,81);;
s4 := ( 1,37)( 2,38)( 3,39)( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)(10,28)
(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,46)(20,47)(21,48)
(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(55,64)(56,65)(57,66)(58,67)(59,68)
(60,69)(61,70)(62,71)(63,72);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s4*s3*s2*s3*s4*s2*s3*s2*s3*s4*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)
(22,25)(23,27)(24,26)(29,30)(31,34)(32,36)(33,35)(38,39)(40,43)(41,45)(42,44)
(47,48)(49,52)(50,54)(51,53)(56,57)(58,61)(59,63)(60,62)(65,66)(67,70)(68,72)
(69,71)(74,75)(76,79)(77,81)(78,80);
s1 := Sym(81)!( 1, 5)( 2, 4)( 3, 6)( 7, 8)(10,14)(11,13)(12,15)(16,17)(19,23)
(20,22)(21,24)(25,26)(28,32)(29,31)(30,33)(34,35)(37,41)(38,40)(39,42)(43,44)
(46,50)(47,49)(48,51)(52,53)(55,59)(56,58)(57,60)(61,62)(64,68)(65,67)(66,69)
(70,71)(73,77)(74,76)(75,78)(79,80);
s2 := Sym(81)!( 4, 7)( 5, 8)( 6, 9)(10,28)(11,29)(12,30)(13,34)(14,35)(15,36)
(16,31)(17,32)(18,33)(19,55)(20,56)(21,57)(22,61)(23,62)(24,63)(25,58)(26,59)
(27,60)(40,43)(41,44)(42,45)(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)
(53,68)(54,69)(76,79)(77,80)(78,81);
s3 := Sym(81)!(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)
(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)
(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81);
s4 := Sym(81)!( 1,37)( 2,38)( 3,39)( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)
(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,46)(20,47)
(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(55,64)(56,65)(57,66)(58,67)
(59,68)(60,69)(61,70)(62,71)(63,72);
poly := sub<Sym(81)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s4*s3*s2*s3*s4*s2*s3*s2*s3*s4*s3*s2 >; 
 
References : None.
to this polytope