Polytope of Type {6,4,6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,6,3}*1296
if this polytope has a name.
Group : SmallGroup(1296,3528)
Rank : 5
Schlafli Type : {6,4,6,3}
Number of vertices, edges, etc : 9, 18, 18, 9, 3
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,4,2,3}*432
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(28,55)
(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,73)(38,74)(39,75)
(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,64)(47,65)(48,66)(49,67)(50,68)
(51,69)(52,70)(53,71)(54,72);;
s1 := ( 1,28)( 2,29)( 3,30)( 4,31)( 5,32)( 6,33)( 7,34)( 8,35)( 9,36)(10,37)
(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)
(22,49)(23,50)(24,51)(25,52)(26,53)(27,54);;
s2 := ( 4, 7)( 5, 8)( 6, 9)(10,28)(11,29)(12,30)(13,34)(14,35)(15,36)(16,31)
(17,32)(18,33)(19,55)(20,56)(21,57)(22,61)(23,62)(24,63)(25,58)(26,59)(27,60)
(40,43)(41,44)(42,45)(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)(53,68)
(54,69)(76,79)(77,80)(78,81);;
s3 := ( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18)(19,22)(20,24)
(21,23)(26,27)(28,31)(29,33)(30,32)(35,36)(37,40)(38,42)(39,41)(44,45)(46,49)
(47,51)(48,50)(53,54)(55,58)(56,60)(57,59)(62,63)(64,67)(65,69)(66,68)(71,72)
(73,76)(74,78)(75,77)(80,81);;
s4 := ( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,20)(22,26)
(23,25)(24,27)(28,29)(31,35)(32,34)(33,36)(37,38)(40,44)(41,43)(42,45)(46,47)
(49,53)(50,52)(51,54)(55,56)(58,62)(59,61)(60,63)(64,65)(67,71)(68,70)(69,72)
(73,74)(76,80)(77,79)(78,81);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)
(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,73)(38,74)
(39,75)(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,64)(47,65)(48,66)(49,67)
(50,68)(51,69)(52,70)(53,71)(54,72);
s1 := Sym(81)!( 1,28)( 2,29)( 3,30)( 4,31)( 5,32)( 6,33)( 7,34)( 8,35)( 9,36)
(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)
(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54);
s2 := Sym(81)!( 4, 7)( 5, 8)( 6, 9)(10,28)(11,29)(12,30)(13,34)(14,35)(15,36)
(16,31)(17,32)(18,33)(19,55)(20,56)(21,57)(22,61)(23,62)(24,63)(25,58)(26,59)
(27,60)(40,43)(41,44)(42,45)(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)
(53,68)(54,69)(76,79)(77,80)(78,81);
s3 := Sym(81)!( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18)(19,22)
(20,24)(21,23)(26,27)(28,31)(29,33)(30,32)(35,36)(37,40)(38,42)(39,41)(44,45)
(46,49)(47,51)(48,50)(53,54)(55,58)(56,60)(57,59)(62,63)(64,67)(65,69)(66,68)
(71,72)(73,76)(74,78)(75,77)(80,81);
s4 := Sym(81)!( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,20)
(22,26)(23,25)(24,27)(28,29)(31,35)(32,34)(33,36)(37,38)(40,44)(41,43)(42,45)
(46,47)(49,53)(50,52)(51,54)(55,56)(58,62)(59,61)(60,63)(64,65)(67,71)(68,70)
(69,72)(73,74)(76,80)(77,79)(78,81);
poly := sub<Sym(81)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1 >; 
 
References : None.
to this polytope