include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,3,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,3,6,6}*1296b
if this polytope has a name.
Group : SmallGroup(1296,3538)
Rank : 5
Schlafli Type : {6,3,6,6}
Number of vertices, edges, etc : 6, 9, 9, 18, 6
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,3,6,6}*432b, {6,3,2,6}*432, {6,3,6,2}*432
6-fold quotients : {6,3,2,3}*216
9-fold quotients : {2,3,2,6}*144, {2,3,6,2}*144, {6,3,2,2}*144
18-fold quotients : {2,3,2,3}*72
27-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)(62,63)
(65,66)(68,69)(71,72)(74,75)(77,78)(80,81);;
s1 := ( 1, 2)( 4, 5)( 7, 8)(10,20)(11,19)(12,21)(13,23)(14,22)(15,24)(16,26)
(17,25)(18,27)(28,56)(29,55)(30,57)(31,59)(32,58)(33,60)(34,62)(35,61)(36,63)
(37,74)(38,73)(39,75)(40,77)(41,76)(42,78)(43,80)(44,79)(45,81)(46,65)(47,64)
(48,66)(49,68)(50,67)(51,69)(52,71)(53,70)(54,72);;
s2 := ( 1,37)( 2,39)( 3,38)( 4,40)( 5,42)( 6,41)( 7,43)( 8,45)( 9,44)(10,28)
(11,30)(12,29)(13,31)(14,33)(15,32)(16,34)(17,36)(18,35)(19,46)(20,48)(21,47)
(22,49)(23,51)(24,50)(25,52)(26,54)(27,53)(55,64)(56,66)(57,65)(58,67)(59,69)
(60,68)(61,70)(62,72)(63,71)(74,75)(77,78)(80,81);;
s3 := ( 4, 7)( 5, 8)( 6, 9)(10,19)(11,20)(12,21)(13,25)(14,26)(15,27)(16,22)
(17,23)(18,24)(31,34)(32,35)(33,36)(37,46)(38,47)(39,48)(40,52)(41,53)(42,54)
(43,49)(44,50)(45,51)(58,61)(59,62)(60,63)(64,73)(65,74)(66,75)(67,79)(68,80)
(69,81)(70,76)(71,77)(72,78);;
s4 := ( 1, 4)( 2, 5)( 3, 6)(10,13)(11,14)(12,15)(19,22)(20,23)(21,24)(28,31)
(29,32)(30,33)(37,40)(38,41)(39,42)(46,49)(47,50)(48,51)(55,58)(56,59)(57,60)
(64,67)(65,68)(66,69)(73,76)(74,77)(75,78);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2,
s2*s3*s4*s3*s2*s3*s4*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)
(62,63)(65,66)(68,69)(71,72)(74,75)(77,78)(80,81);
s1 := Sym(81)!( 1, 2)( 4, 5)( 7, 8)(10,20)(11,19)(12,21)(13,23)(14,22)(15,24)
(16,26)(17,25)(18,27)(28,56)(29,55)(30,57)(31,59)(32,58)(33,60)(34,62)(35,61)
(36,63)(37,74)(38,73)(39,75)(40,77)(41,76)(42,78)(43,80)(44,79)(45,81)(46,65)
(47,64)(48,66)(49,68)(50,67)(51,69)(52,71)(53,70)(54,72);
s2 := Sym(81)!( 1,37)( 2,39)( 3,38)( 4,40)( 5,42)( 6,41)( 7,43)( 8,45)( 9,44)
(10,28)(11,30)(12,29)(13,31)(14,33)(15,32)(16,34)(17,36)(18,35)(19,46)(20,48)
(21,47)(22,49)(23,51)(24,50)(25,52)(26,54)(27,53)(55,64)(56,66)(57,65)(58,67)
(59,69)(60,68)(61,70)(62,72)(63,71)(74,75)(77,78)(80,81);
s3 := Sym(81)!( 4, 7)( 5, 8)( 6, 9)(10,19)(11,20)(12,21)(13,25)(14,26)(15,27)
(16,22)(17,23)(18,24)(31,34)(32,35)(33,36)(37,46)(38,47)(39,48)(40,52)(41,53)
(42,54)(43,49)(44,50)(45,51)(58,61)(59,62)(60,63)(64,73)(65,74)(66,75)(67,79)
(68,80)(69,81)(70,76)(71,77)(72,78);
s4 := Sym(81)!( 1, 4)( 2, 5)( 3, 6)(10,13)(11,14)(12,15)(19,22)(20,23)(21,24)
(28,31)(29,32)(30,33)(37,40)(38,41)(39,42)(46,49)(47,50)(48,51)(55,58)(56,59)
(57,60)(64,67)(65,68)(66,69)(73,76)(74,77)(75,78);
poly := sub<Sym(81)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2, s2*s3*s4*s3*s2*s3*s4*s3,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
References : None.
to this polytope