Polytope of Type {2,3,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,6,6}*432b
if this polytope has a name.
Group : SmallGroup(432,759)
Rank : 5
Schlafli Type : {2,3,6,6}
Number of vertices, edges, etc : 2, 3, 9, 18, 6
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,3,6,6,2} of size 864
   {2,3,6,6,3} of size 1296
   {2,3,6,6,4} of size 1728
   {2,3,6,6,3} of size 1728
   {2,3,6,6,4} of size 1728
Vertex Figure Of :
   {2,2,3,6,6} of size 864
   {3,2,3,6,6} of size 1296
   {4,2,3,6,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,3,2,6}*144, {2,3,6,2}*144
   6-fold quotients : {2,3,2,3}*72
   9-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,3,6,12}*864b, {2,6,6,6}*864g
   3-fold covers : {2,3,6,18}*1296b, {2,9,6,6}*1296b, {2,3,6,6}*1296c, {2,3,6,6}*1296d, {2,3,6,6}*1296e, {6,3,6,6}*1296b
   4-fold covers : {2,3,6,24}*1728b, {2,12,6,6}*1728d, {4,6,6,6}*1728f, {2,6,6,12}*1728e, {2,6,12,6}*1728f, {4,3,6,6}*1728b, {2,3,6,6}*1728, {2,3,12,6}*1728b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 6, 9)( 7,10)( 8,11)(12,21)(13,22)(14,23)(15,27)(16,28)(17,29)(18,24)
(19,25)(20,26);;
s2 := ( 3,15)( 4,16)( 5,17)( 6,12)( 7,13)( 8,14)( 9,18)(10,19)(11,20)(21,24)
(22,25)(23,26);;
s3 := ( 4, 5)( 7, 8)(10,11)(12,21)(13,23)(14,22)(15,24)(16,26)(17,25)(18,27)
(19,29)(20,28);;
s4 := ( 3, 4)( 6, 7)( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(27,28);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(29)!(1,2);
s1 := Sym(29)!( 6, 9)( 7,10)( 8,11)(12,21)(13,22)(14,23)(15,27)(16,28)(17,29)
(18,24)(19,25)(20,26);
s2 := Sym(29)!( 3,15)( 4,16)( 5,17)( 6,12)( 7,13)( 8,14)( 9,18)(10,19)(11,20)
(21,24)(22,25)(23,26);
s3 := Sym(29)!( 4, 5)( 7, 8)(10,11)(12,21)(13,23)(14,22)(15,24)(16,26)(17,25)
(18,27)(19,29)(20,28);
s4 := Sym(29)!( 3, 4)( 6, 7)( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(27,28);
poly := sub<Sym(29)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope