include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,6,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,6,3}*1296c
if this polytope has a name.
Group : SmallGroup(1296,3538)
Rank : 5
Schlafli Type : {6,6,6,3}
Number of vertices, edges, etc : 6, 18, 18, 9, 3
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,6,6,3}*432b, {6,2,6,3}*432, {6,6,2,3}*432a
6-fold quotients : {3,2,6,3}*216
9-fold quotients : {2,2,6,3}*144, {2,6,2,3}*144, {6,2,2,3}*144
18-fold quotients : {2,3,2,3}*72, {3,2,2,3}*72
27-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)(62,63)
(65,66)(68,69)(71,72)(74,75)(77,78)(80,81);;
s1 := ( 1, 2)( 4, 5)( 7, 8)(10,20)(11,19)(12,21)(13,23)(14,22)(15,24)(16,26)
(17,25)(18,27)(28,29)(31,32)(34,35)(37,47)(38,46)(39,48)(40,50)(41,49)(42,51)
(43,53)(44,52)(45,54)(55,56)(58,59)(61,62)(64,74)(65,73)(66,75)(67,77)(68,76)
(69,78)(70,80)(71,79)(72,81);;
s2 := ( 1,10)( 2,11)( 3,12)( 4,13)( 5,14)( 6,15)( 7,16)( 8,17)( 9,18)(28,64)
(29,65)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,55)(38,56)(39,57)
(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,73)(47,74)(48,75)(49,76)(50,77)
(51,78)(52,79)(53,80)(54,81);;
s3 := ( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)(10,37)
(11,38)(12,39)(13,43)(14,44)(15,45)(16,40)(17,41)(18,42)(19,46)(20,47)(21,48)
(22,52)(23,53)(24,54)(25,49)(26,50)(27,51)(58,61)(59,62)(60,63)(67,70)(68,71)
(69,72)(76,79)(77,80)(78,81);;
s4 := ( 1, 4)( 2, 5)( 3, 6)(10,13)(11,14)(12,15)(19,22)(20,23)(21,24)(28,58)
(29,59)(30,60)(31,55)(32,56)(33,57)(34,61)(35,62)(36,63)(37,67)(38,68)(39,69)
(40,64)(41,65)(42,66)(43,70)(44,71)(45,72)(46,76)(47,77)(48,78)(49,73)(50,74)
(51,75)(52,79)(53,80)(54,81);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)
(62,63)(65,66)(68,69)(71,72)(74,75)(77,78)(80,81);
s1 := Sym(81)!( 1, 2)( 4, 5)( 7, 8)(10,20)(11,19)(12,21)(13,23)(14,22)(15,24)
(16,26)(17,25)(18,27)(28,29)(31,32)(34,35)(37,47)(38,46)(39,48)(40,50)(41,49)
(42,51)(43,53)(44,52)(45,54)(55,56)(58,59)(61,62)(64,74)(65,73)(66,75)(67,77)
(68,76)(69,78)(70,80)(71,79)(72,81);
s2 := Sym(81)!( 1,10)( 2,11)( 3,12)( 4,13)( 5,14)( 6,15)( 7,16)( 8,17)( 9,18)
(28,64)(29,65)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,55)(38,56)
(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,73)(47,74)(48,75)(49,76)
(50,77)(51,78)(52,79)(53,80)(54,81);
s3 := Sym(81)!( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)
(10,37)(11,38)(12,39)(13,43)(14,44)(15,45)(16,40)(17,41)(18,42)(19,46)(20,47)
(21,48)(22,52)(23,53)(24,54)(25,49)(26,50)(27,51)(58,61)(59,62)(60,63)(67,70)
(68,71)(69,72)(76,79)(77,80)(78,81);
s4 := Sym(81)!( 1, 4)( 2, 5)( 3, 6)(10,13)(11,14)(12,15)(19,22)(20,23)(21,24)
(28,58)(29,59)(30,60)(31,55)(32,56)(33,57)(34,61)(35,62)(36,63)(37,67)(38,68)
(39,69)(40,64)(41,65)(42,66)(43,70)(44,71)(45,72)(46,76)(47,77)(48,78)(49,73)
(50,74)(51,75)(52,79)(53,80)(54,81);
poly := sub<Sym(81)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope