include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,6,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6,3}*432b
if this polytope has a name.
Group : SmallGroup(432,759)
Rank : 5
Schlafli Type : {2,6,6,3}
Number of vertices, edges, etc : 2, 6, 18, 9, 3
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,6,6,3,2} of size 864
{2,6,6,3,4} of size 1728
Vertex Figure Of :
{2,2,6,6,3} of size 864
{3,2,6,6,3} of size 1296
{4,2,6,6,3} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,2,6,3}*144, {2,6,2,3}*144
6-fold quotients : {2,3,2,3}*72
9-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,12,6,3}*864b, {4,6,6,3}*864d, {2,6,6,6}*864c
3-fold covers : {2,6,6,9}*1296b, {2,18,6,3}*1296b, {2,6,6,3}*1296c, {2,6,6,3}*1296d, {2,6,6,3}*1296e, {6,6,6,3}*1296c, {6,6,6,3}*1296d
4-fold covers : {2,24,6,3}*1728b, {8,6,6,3}*1728b, {4,12,6,3}*1728d, {2,6,6,12}*1728c, {2,12,6,6}*1728e, {2,6,12,6}*1728g, {4,6,6,6}*1728i, {4,6,6,3}*1728b, {2,6,6,3}*1728, {2,6,12,3}*1728b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(19,28)(20,29);;
s2 := ( 3,12)( 4,13)( 5,14)( 6,18)( 7,19)( 8,20)( 9,15)(10,16)(11,17)(24,27)
(25,28)(26,29);;
s3 := ( 3, 6)( 4, 8)( 5, 7)(10,11)(12,15)(13,17)(14,16)(19,20)(21,24)(22,26)
(23,25)(28,29);;
s4 := ( 3, 4)( 6,10)( 7, 9)( 8,11)(12,13)(15,19)(16,18)(17,20)(21,22)(24,28)
(25,27)(26,29);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s2,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(29)!(1,2);
s1 := Sym(29)!(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(19,28)(20,29);
s2 := Sym(29)!( 3,12)( 4,13)( 5,14)( 6,18)( 7,19)( 8,20)( 9,15)(10,16)(11,17)
(24,27)(25,28)(26,29);
s3 := Sym(29)!( 3, 6)( 4, 8)( 5, 7)(10,11)(12,15)(13,17)(14,16)(19,20)(21,24)
(22,26)(23,25)(28,29);
s4 := Sym(29)!( 3, 4)( 6,10)( 7, 9)( 8,11)(12,13)(15,19)(16,18)(17,20)(21,22)
(24,28)(25,27)(26,29);
poly := sub<Sym(29)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4,
s1*s2*s3*s2*s1*s2*s3*s2, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope