include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,18}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,18}*1296f
if this polytope has a name.
Group : SmallGroup(1296,917)
Rank : 3
Schlafli Type : {12,18}
Number of vertices, edges, etc : 36, 324, 54
Order of s0s1s2 : 12
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,18}*648c
3-fold quotients : {12,6}*432c
4-fold quotients : {6,9}*324c
6-fold quotients : {6,6}*216a
9-fold quotients : {12,6}*144c
12-fold quotients : {6,3}*108
18-fold quotients : {6,6}*72b
27-fold quotients : {4,6}*48a
36-fold quotients : {6,3}*36
54-fold quotients : {2,6}*24
81-fold quotients : {4,2}*16
108-fold quotients : {2,3}*12
162-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 8)( 5, 9)( 6, 7)( 10, 19)( 11, 20)( 12, 21)( 13, 26)( 14, 27)
( 15, 25)( 16, 24)( 17, 22)( 18, 23)( 31, 35)( 32, 36)( 33, 34)( 37, 46)
( 38, 47)( 39, 48)( 40, 53)( 41, 54)( 42, 52)( 43, 51)( 44, 49)( 45, 50)
( 58, 62)( 59, 63)( 60, 61)( 64, 73)( 65, 74)( 66, 75)( 67, 80)( 68, 81)
( 69, 79)( 70, 78)( 71, 76)( 72, 77)( 85, 89)( 86, 90)( 87, 88)( 91,100)
( 92,101)( 93,102)( 94,107)( 95,108)( 96,106)( 97,105)( 98,103)( 99,104)
(112,116)(113,117)(114,115)(118,127)(119,128)(120,129)(121,134)(122,135)
(123,133)(124,132)(125,130)(126,131)(139,143)(140,144)(141,142)(145,154)
(146,155)(147,156)(148,161)(149,162)(150,160)(151,159)(152,157)(153,158)
(163,244)(164,245)(165,246)(166,251)(167,252)(168,250)(169,249)(170,247)
(171,248)(172,262)(173,263)(174,264)(175,269)(176,270)(177,268)(178,267)
(179,265)(180,266)(181,253)(182,254)(183,255)(184,260)(185,261)(186,259)
(187,258)(188,256)(189,257)(190,271)(191,272)(192,273)(193,278)(194,279)
(195,277)(196,276)(197,274)(198,275)(199,289)(200,290)(201,291)(202,296)
(203,297)(204,295)(205,294)(206,292)(207,293)(208,280)(209,281)(210,282)
(211,287)(212,288)(213,286)(214,285)(215,283)(216,284)(217,298)(218,299)
(219,300)(220,305)(221,306)(222,304)(223,303)(224,301)(225,302)(226,316)
(227,317)(228,318)(229,323)(230,324)(231,322)(232,321)(233,319)(234,320)
(235,307)(236,308)(237,309)(238,314)(239,315)(240,313)(241,312)(242,310)
(243,311);;
s1 := ( 1,172)( 2,174)( 3,173)( 4,175)( 5,177)( 6,176)( 7,178)( 8,180)
( 9,179)( 10,163)( 11,165)( 12,164)( 13,166)( 14,168)( 15,167)( 16,169)
( 17,171)( 18,170)( 19,181)( 20,183)( 21,182)( 22,184)( 23,186)( 24,185)
( 25,187)( 26,189)( 27,188)( 28,226)( 29,228)( 30,227)( 31,229)( 32,231)
( 33,230)( 34,232)( 35,234)( 36,233)( 37,217)( 38,219)( 39,218)( 40,220)
( 41,222)( 42,221)( 43,223)( 44,225)( 45,224)( 46,235)( 47,237)( 48,236)
( 49,238)( 50,240)( 51,239)( 52,241)( 53,243)( 54,242)( 55,199)( 56,201)
( 57,200)( 58,202)( 59,204)( 60,203)( 61,205)( 62,207)( 63,206)( 64,190)
( 65,192)( 66,191)( 67,193)( 68,195)( 69,194)( 70,196)( 71,198)( 72,197)
( 73,208)( 74,210)( 75,209)( 76,211)( 77,213)( 78,212)( 79,214)( 80,216)
( 81,215)( 82,253)( 83,255)( 84,254)( 85,256)( 86,258)( 87,257)( 88,259)
( 89,261)( 90,260)( 91,244)( 92,246)( 93,245)( 94,247)( 95,249)( 96,248)
( 97,250)( 98,252)( 99,251)(100,262)(101,264)(102,263)(103,265)(104,267)
(105,266)(106,268)(107,270)(108,269)(109,307)(110,309)(111,308)(112,310)
(113,312)(114,311)(115,313)(116,315)(117,314)(118,298)(119,300)(120,299)
(121,301)(122,303)(123,302)(124,304)(125,306)(126,305)(127,316)(128,318)
(129,317)(130,319)(131,321)(132,320)(133,322)(134,324)(135,323)(136,280)
(137,282)(138,281)(139,283)(140,285)(141,284)(142,286)(143,288)(144,287)
(145,271)(146,273)(147,272)(148,274)(149,276)(150,275)(151,277)(152,279)
(153,278)(154,289)(155,291)(156,290)(157,292)(158,294)(159,293)(160,295)
(161,297)(162,296);;
s2 := ( 1, 28)( 2, 30)( 3, 29)( 4, 33)( 5, 32)( 6, 31)( 7, 35)( 8, 34)
( 9, 36)( 10, 53)( 11, 52)( 12, 54)( 13, 46)( 14, 48)( 15, 47)( 16, 51)
( 17, 50)( 18, 49)( 19, 40)( 20, 42)( 21, 41)( 22, 45)( 23, 44)( 24, 43)
( 25, 38)( 26, 37)( 27, 39)( 56, 57)( 58, 60)( 61, 62)( 64, 80)( 65, 79)
( 66, 81)( 67, 73)( 68, 75)( 69, 74)( 70, 78)( 71, 77)( 72, 76)( 82,109)
( 83,111)( 84,110)( 85,114)( 86,113)( 87,112)( 88,116)( 89,115)( 90,117)
( 91,134)( 92,133)( 93,135)( 94,127)( 95,129)( 96,128)( 97,132)( 98,131)
( 99,130)(100,121)(101,123)(102,122)(103,126)(104,125)(105,124)(106,119)
(107,118)(108,120)(137,138)(139,141)(142,143)(145,161)(146,160)(147,162)
(148,154)(149,156)(150,155)(151,159)(152,158)(153,157)(163,190)(164,192)
(165,191)(166,195)(167,194)(168,193)(169,197)(170,196)(171,198)(172,215)
(173,214)(174,216)(175,208)(176,210)(177,209)(178,213)(179,212)(180,211)
(181,202)(182,204)(183,203)(184,207)(185,206)(186,205)(187,200)(188,199)
(189,201)(218,219)(220,222)(223,224)(226,242)(227,241)(228,243)(229,235)
(230,237)(231,236)(232,240)(233,239)(234,238)(244,271)(245,273)(246,272)
(247,276)(248,275)(249,274)(250,278)(251,277)(252,279)(253,296)(254,295)
(255,297)(256,289)(257,291)(258,290)(259,294)(260,293)(261,292)(262,283)
(263,285)(264,284)(265,288)(266,287)(267,286)(268,281)(269,280)(270,282)
(299,300)(301,303)(304,305)(307,323)(308,322)(309,324)(310,316)(311,318)
(312,317)(313,321)(314,320)(315,319);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1,
s1*s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s2*s0*s1*s0*s2*s1*s0*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(324)!( 4, 8)( 5, 9)( 6, 7)( 10, 19)( 11, 20)( 12, 21)( 13, 26)
( 14, 27)( 15, 25)( 16, 24)( 17, 22)( 18, 23)( 31, 35)( 32, 36)( 33, 34)
( 37, 46)( 38, 47)( 39, 48)( 40, 53)( 41, 54)( 42, 52)( 43, 51)( 44, 49)
( 45, 50)( 58, 62)( 59, 63)( 60, 61)( 64, 73)( 65, 74)( 66, 75)( 67, 80)
( 68, 81)( 69, 79)( 70, 78)( 71, 76)( 72, 77)( 85, 89)( 86, 90)( 87, 88)
( 91,100)( 92,101)( 93,102)( 94,107)( 95,108)( 96,106)( 97,105)( 98,103)
( 99,104)(112,116)(113,117)(114,115)(118,127)(119,128)(120,129)(121,134)
(122,135)(123,133)(124,132)(125,130)(126,131)(139,143)(140,144)(141,142)
(145,154)(146,155)(147,156)(148,161)(149,162)(150,160)(151,159)(152,157)
(153,158)(163,244)(164,245)(165,246)(166,251)(167,252)(168,250)(169,249)
(170,247)(171,248)(172,262)(173,263)(174,264)(175,269)(176,270)(177,268)
(178,267)(179,265)(180,266)(181,253)(182,254)(183,255)(184,260)(185,261)
(186,259)(187,258)(188,256)(189,257)(190,271)(191,272)(192,273)(193,278)
(194,279)(195,277)(196,276)(197,274)(198,275)(199,289)(200,290)(201,291)
(202,296)(203,297)(204,295)(205,294)(206,292)(207,293)(208,280)(209,281)
(210,282)(211,287)(212,288)(213,286)(214,285)(215,283)(216,284)(217,298)
(218,299)(219,300)(220,305)(221,306)(222,304)(223,303)(224,301)(225,302)
(226,316)(227,317)(228,318)(229,323)(230,324)(231,322)(232,321)(233,319)
(234,320)(235,307)(236,308)(237,309)(238,314)(239,315)(240,313)(241,312)
(242,310)(243,311);
s1 := Sym(324)!( 1,172)( 2,174)( 3,173)( 4,175)( 5,177)( 6,176)( 7,178)
( 8,180)( 9,179)( 10,163)( 11,165)( 12,164)( 13,166)( 14,168)( 15,167)
( 16,169)( 17,171)( 18,170)( 19,181)( 20,183)( 21,182)( 22,184)( 23,186)
( 24,185)( 25,187)( 26,189)( 27,188)( 28,226)( 29,228)( 30,227)( 31,229)
( 32,231)( 33,230)( 34,232)( 35,234)( 36,233)( 37,217)( 38,219)( 39,218)
( 40,220)( 41,222)( 42,221)( 43,223)( 44,225)( 45,224)( 46,235)( 47,237)
( 48,236)( 49,238)( 50,240)( 51,239)( 52,241)( 53,243)( 54,242)( 55,199)
( 56,201)( 57,200)( 58,202)( 59,204)( 60,203)( 61,205)( 62,207)( 63,206)
( 64,190)( 65,192)( 66,191)( 67,193)( 68,195)( 69,194)( 70,196)( 71,198)
( 72,197)( 73,208)( 74,210)( 75,209)( 76,211)( 77,213)( 78,212)( 79,214)
( 80,216)( 81,215)( 82,253)( 83,255)( 84,254)( 85,256)( 86,258)( 87,257)
( 88,259)( 89,261)( 90,260)( 91,244)( 92,246)( 93,245)( 94,247)( 95,249)
( 96,248)( 97,250)( 98,252)( 99,251)(100,262)(101,264)(102,263)(103,265)
(104,267)(105,266)(106,268)(107,270)(108,269)(109,307)(110,309)(111,308)
(112,310)(113,312)(114,311)(115,313)(116,315)(117,314)(118,298)(119,300)
(120,299)(121,301)(122,303)(123,302)(124,304)(125,306)(126,305)(127,316)
(128,318)(129,317)(130,319)(131,321)(132,320)(133,322)(134,324)(135,323)
(136,280)(137,282)(138,281)(139,283)(140,285)(141,284)(142,286)(143,288)
(144,287)(145,271)(146,273)(147,272)(148,274)(149,276)(150,275)(151,277)
(152,279)(153,278)(154,289)(155,291)(156,290)(157,292)(158,294)(159,293)
(160,295)(161,297)(162,296);
s2 := Sym(324)!( 1, 28)( 2, 30)( 3, 29)( 4, 33)( 5, 32)( 6, 31)( 7, 35)
( 8, 34)( 9, 36)( 10, 53)( 11, 52)( 12, 54)( 13, 46)( 14, 48)( 15, 47)
( 16, 51)( 17, 50)( 18, 49)( 19, 40)( 20, 42)( 21, 41)( 22, 45)( 23, 44)
( 24, 43)( 25, 38)( 26, 37)( 27, 39)( 56, 57)( 58, 60)( 61, 62)( 64, 80)
( 65, 79)( 66, 81)( 67, 73)( 68, 75)( 69, 74)( 70, 78)( 71, 77)( 72, 76)
( 82,109)( 83,111)( 84,110)( 85,114)( 86,113)( 87,112)( 88,116)( 89,115)
( 90,117)( 91,134)( 92,133)( 93,135)( 94,127)( 95,129)( 96,128)( 97,132)
( 98,131)( 99,130)(100,121)(101,123)(102,122)(103,126)(104,125)(105,124)
(106,119)(107,118)(108,120)(137,138)(139,141)(142,143)(145,161)(146,160)
(147,162)(148,154)(149,156)(150,155)(151,159)(152,158)(153,157)(163,190)
(164,192)(165,191)(166,195)(167,194)(168,193)(169,197)(170,196)(171,198)
(172,215)(173,214)(174,216)(175,208)(176,210)(177,209)(178,213)(179,212)
(180,211)(181,202)(182,204)(183,203)(184,207)(185,206)(186,205)(187,200)
(188,199)(189,201)(218,219)(220,222)(223,224)(226,242)(227,241)(228,243)
(229,235)(230,237)(231,236)(232,240)(233,239)(234,238)(244,271)(245,273)
(246,272)(247,276)(248,275)(249,274)(250,278)(251,277)(252,279)(253,296)
(254,295)(255,297)(256,289)(257,291)(258,290)(259,294)(260,293)(261,292)
(262,283)(263,285)(264,284)(265,288)(266,287)(267,286)(268,281)(269,280)
(270,282)(299,300)(301,303)(304,305)(307,323)(308,322)(309,324)(310,316)
(311,318)(312,317)(313,321)(314,320)(315,319);
poly := sub<Sym(324)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1,
s1*s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s2*s0*s1*s0*s2*s1*s0*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope