Polytope of Type {6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,3}*108
Also Known As : {6,3}(3,0), {6,3}6if this polytope has another name.
Group : SmallGroup(108,17)
Rank : 3
Schlafli Type : {6,3}
Number of vertices, edges, etc : 18, 27, 9
Order of s0s1s2 : 6
Order of s0s1s2s1 : 6
Special Properties :
   Toroidal
   Locally Spherical
   Orientable
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {6,3,2} of size 216
   {6,3,4} of size 432
   {6,3,6} of size 648
   {6,3,4} of size 864
   {6,3,3} of size 1296
   {6,3,4} of size 1296
   {6,3,8} of size 1728
   {6,3,6} of size 1944
   {6,3,6} of size 1944
   {6,3,6} of size 1944
Vertex Figure Of :
   {2,6,3} of size 216
   {3,6,3} of size 324
   {4,6,3} of size 432
   {6,6,3} of size 648
   {6,6,3} of size 648
   {8,6,3} of size 864
   {3,6,3} of size 972
   {9,6,3} of size 972
   {10,6,3} of size 1080
   {12,6,3} of size 1296
   {12,6,3} of size 1296
   {14,6,3} of size 1512
   {15,6,3} of size 1620
   {16,6,3} of size 1728
   {4,6,3} of size 1728
   {6,6,3} of size 1944
   {18,6,3} of size 1944
   {18,6,3} of size 1944
   {6,6,3} of size 1944
   {6,6,3} of size 1944
   {6,6,3} of size 1944
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,3}*36
   9-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,6}*216a
   3-fold covers : {6,9}*324a, {6,9}*324b, {6,9}*324c, {6,9}*324d, {6,3}*324, {18,3}*324
   4-fold covers : {6,12}*432a, {12,6}*432c, {6,3}*432, {12,3}*432
   5-fold covers : {6,15}*540
   6-fold covers : {6,18}*648a, {6,18}*648c, {6,18}*648d, {6,18}*648e, {6,6}*648c, {18,6}*648h, {6,6}*648f
   7-fold covers : {6,21}*756
   8-fold covers : {6,24}*864a, {12,12}*864b, {24,6}*864c, {12,3}*864, {24,3}*864, {6,6}*864b, {12,6}*864a
   9-fold covers : {18,9}*972a, {18,3}*972a, {6,9}*972a, {6,9}*972b, {18,9}*972b, {6,9}*972c, {18,9}*972c, {18,9}*972d, {18,9}*972e, {6,27}*972a, {6,9}*972d, {18,9}*972f, {18,9}*972g, {18,9}*972h, {18,9}*972i, {6,9}*972e, {18,9}*972j, {6,27}*972b, {6,27}*972c, {6,3}*972, {18,3}*972b
   10-fold covers : {30,6}*1080a, {6,30}*1080b
   11-fold covers : {6,33}*1188
   12-fold covers : {6,36}*1296a, {6,36}*1296c, {6,36}*1296d, {6,36}*1296e, {18,12}*1296d, {6,12}*1296c, {12,18}*1296e, {12,18}*1296f, {12,18}*1296g, {12,18}*1296h, {12,6}*1296d, {36,6}*1296h, {6,9}*1296a, {6,3}*1296, {36,3}*1296, {6,9}*1296b, {12,3}*1296a, {18,3}*1296a, {12,9}*1296a, {6,9}*1296c, {12,9}*1296b, {12,9}*1296c, {6,9}*1296d, {12,9}*1296d, {6,12}*1296h, {12,6}*1296i
   13-fold covers : {6,39}*1404
   14-fold covers : {42,6}*1512a, {6,42}*1512b
   15-fold covers : {6,45}*1620a, {6,45}*1620b, {6,45}*1620c, {6,45}*1620d, {6,15}*1620, {18,15}*1620
   16-fold covers : {6,48}*1728a, {24,12}*1728a, {12,12}*1728b, {24,12}*1728b, {12,24}*1728c, {12,24}*1728e, {48,6}*1728c, {6,3}*1728, {24,3}*1728, {12,12}*1728k, {6,12}*1728a, {12,12}*1728n, {12,6}*1728c, {24,6}*1728b, {6,6}*1728a, {24,6}*1728d, {6,12}*1728d, {12,6}*1728e, {12,6}*1728f, {12,3}*1728, {6,6}*1728e
   17-fold covers : {6,51}*1836
   18-fold covers : {18,18}*1944b, {6,18}*1944a, {18,6}*1944b, {6,18}*1944d, {18,18}*1944e, {6,18}*1944f, {18,18}*1944g, {18,18}*1944j, {18,18}*1944n, {6,54}*1944a, {6,18}*1944h, {18,18}*1944p, {18,18}*1944r, {18,18}*1944w, {18,18}*1944aa, {6,18}*1944i, {18,18}*1944ac, {6,54}*1944c, {6,54}*1944e, {6,6}*1944c, {18,6}*1944k, {6,18}*1944m, {18,6}*1944o, {6,6}*1944d, {6,6}*1944f, {6,18}*1944p, {6,18}*1944q, {6,18}*1944r, {6,6}*1944i, {18,6}*1944u
Permutation Representation (GAP) :
s0 := (4,5)(6,7)(8,9);;
s1 := (2,6)(3,4)(5,7);;
s2 := (1,2)(4,8)(5,9);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(9)!(4,5)(6,7)(8,9);
s1 := Sym(9)!(2,6)(3,4)(5,7);
s2 := Sym(9)!(1,2)(4,8)(5,9);
poly := sub<Sym(9)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 >; 
 
References : None.
to this polytope