Polytope of Type {66,2,5}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {66,2,5}*1320
if this polytope has a name.
Group : SmallGroup(1320,170)
Rank : 4
Schlafli Type : {66,2,5}
Number of vertices, edges, etc : 66, 66, 5, 5
Order of s0s1s2s3 : 330
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {33,2,5}*660
   3-fold quotients : {22,2,5}*440
   6-fold quotients : {11,2,5}*220
   11-fold quotients : {6,2,5}*120
   22-fold quotients : {3,2,5}*60
   33-fold quotients : {2,2,5}*40
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(12,23)(13,33)(14,32)(15,31)(16,30)
(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(35,44)(36,43)(37,42)(38,41)(39,40)
(45,56)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)
(55,57);;
s1 := ( 1,46)( 2,45)( 3,55)( 4,54)( 5,53)( 6,52)( 7,51)( 8,50)( 9,49)(10,48)
(11,47)(12,35)(13,34)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)
(22,36)(23,57)(24,56)(25,66)(26,65)(27,64)(28,63)(29,62)(30,61)(31,60)(32,59)
(33,58);;
s2 := (68,69)(70,71);;
s3 := (67,68)(69,70);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(71)!( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(12,23)(13,33)(14,32)(15,31)
(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(35,44)(36,43)(37,42)(38,41)
(39,40)(45,56)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)
(55,57);
s1 := Sym(71)!( 1,46)( 2,45)( 3,55)( 4,54)( 5,53)( 6,52)( 7,51)( 8,50)( 9,49)
(10,48)(11,47)(12,35)(13,34)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)
(21,37)(22,36)(23,57)(24,56)(25,66)(26,65)(27,64)(28,63)(29,62)(30,61)(31,60)
(32,59)(33,58);
s2 := Sym(71)!(68,69)(70,71);
s3 := Sym(71)!(67,68)(69,70);
poly := sub<Sym(71)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope