include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {42,8,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {42,8,2}*1344
if this polytope has a name.
Group : SmallGroup(1344,11133)
Rank : 4
Schlafli Type : {42,8,2}
Number of vertices, edges, etc : 42, 168, 8, 2
Order of s0s1s2s3 : 168
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {42,4,2}*672a
3-fold quotients : {14,8,2}*448
4-fold quotients : {42,2,2}*336
6-fold quotients : {14,4,2}*224
7-fold quotients : {6,8,2}*192
8-fold quotients : {21,2,2}*168
12-fold quotients : {14,2,2}*112
14-fold quotients : {6,4,2}*96a
21-fold quotients : {2,8,2}*64
24-fold quotients : {7,2,2}*56
28-fold quotients : {6,2,2}*48
42-fold quotients : {2,4,2}*32
56-fold quotients : {3,2,2}*24
84-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 8, 15)( 9, 21)( 10, 20)( 11, 19)( 12, 18)
( 13, 17)( 14, 16)( 23, 28)( 24, 27)( 25, 26)( 29, 36)( 30, 42)( 31, 41)
( 32, 40)( 33, 39)( 34, 38)( 35, 37)( 44, 49)( 45, 48)( 46, 47)( 50, 57)
( 51, 63)( 52, 62)( 53, 61)( 54, 60)( 55, 59)( 56, 58)( 65, 70)( 66, 69)
( 67, 68)( 71, 78)( 72, 84)( 73, 83)( 74, 82)( 75, 81)( 76, 80)( 77, 79)
( 86, 91)( 87, 90)( 88, 89)( 92, 99)( 93,105)( 94,104)( 95,103)( 96,102)
( 97,101)( 98,100)(107,112)(108,111)(109,110)(113,120)(114,126)(115,125)
(116,124)(117,123)(118,122)(119,121)(128,133)(129,132)(130,131)(134,141)
(135,147)(136,146)(137,145)(138,144)(139,143)(140,142)(149,154)(150,153)
(151,152)(155,162)(156,168)(157,167)(158,166)(159,165)(160,164)(161,163);;
s1 := ( 1, 9)( 2, 8)( 3, 14)( 4, 13)( 5, 12)( 6, 11)( 7, 10)( 15, 16)
( 17, 21)( 18, 20)( 22, 30)( 23, 29)( 24, 35)( 25, 34)( 26, 33)( 27, 32)
( 28, 31)( 36, 37)( 38, 42)( 39, 41)( 43, 72)( 44, 71)( 45, 77)( 46, 76)
( 47, 75)( 48, 74)( 49, 73)( 50, 65)( 51, 64)( 52, 70)( 53, 69)( 54, 68)
( 55, 67)( 56, 66)( 57, 79)( 58, 78)( 59, 84)( 60, 83)( 61, 82)( 62, 81)
( 63, 80)( 85,135)( 86,134)( 87,140)( 88,139)( 89,138)( 90,137)( 91,136)
( 92,128)( 93,127)( 94,133)( 95,132)( 96,131)( 97,130)( 98,129)( 99,142)
(100,141)(101,147)(102,146)(103,145)(104,144)(105,143)(106,156)(107,155)
(108,161)(109,160)(110,159)(111,158)(112,157)(113,149)(114,148)(115,154)
(116,153)(117,152)(118,151)(119,150)(120,163)(121,162)(122,168)(123,167)
(124,166)(125,165)(126,164);;
s2 := ( 1, 85)( 2, 86)( 3, 87)( 4, 88)( 5, 89)( 6, 90)( 7, 91)( 8, 92)
( 9, 93)( 10, 94)( 11, 95)( 12, 96)( 13, 97)( 14, 98)( 15, 99)( 16,100)
( 17,101)( 18,102)( 19,103)( 20,104)( 21,105)( 22,106)( 23,107)( 24,108)
( 25,109)( 26,110)( 27,111)( 28,112)( 29,113)( 30,114)( 31,115)( 32,116)
( 33,117)( 34,118)( 35,119)( 36,120)( 37,121)( 38,122)( 39,123)( 40,124)
( 41,125)( 42,126)( 43,148)( 44,149)( 45,150)( 46,151)( 47,152)( 48,153)
( 49,154)( 50,155)( 51,156)( 52,157)( 53,158)( 54,159)( 55,160)( 56,161)
( 57,162)( 58,163)( 59,164)( 60,165)( 61,166)( 62,167)( 63,168)( 64,127)
( 65,128)( 66,129)( 67,130)( 68,131)( 69,132)( 70,133)( 71,134)( 72,135)
( 73,136)( 74,137)( 75,138)( 76,139)( 77,140)( 78,141)( 79,142)( 80,143)
( 81,144)( 82,145)( 83,146)( 84,147);;
s3 := (169,170);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(170)!( 2, 7)( 3, 6)( 4, 5)( 8, 15)( 9, 21)( 10, 20)( 11, 19)
( 12, 18)( 13, 17)( 14, 16)( 23, 28)( 24, 27)( 25, 26)( 29, 36)( 30, 42)
( 31, 41)( 32, 40)( 33, 39)( 34, 38)( 35, 37)( 44, 49)( 45, 48)( 46, 47)
( 50, 57)( 51, 63)( 52, 62)( 53, 61)( 54, 60)( 55, 59)( 56, 58)( 65, 70)
( 66, 69)( 67, 68)( 71, 78)( 72, 84)( 73, 83)( 74, 82)( 75, 81)( 76, 80)
( 77, 79)( 86, 91)( 87, 90)( 88, 89)( 92, 99)( 93,105)( 94,104)( 95,103)
( 96,102)( 97,101)( 98,100)(107,112)(108,111)(109,110)(113,120)(114,126)
(115,125)(116,124)(117,123)(118,122)(119,121)(128,133)(129,132)(130,131)
(134,141)(135,147)(136,146)(137,145)(138,144)(139,143)(140,142)(149,154)
(150,153)(151,152)(155,162)(156,168)(157,167)(158,166)(159,165)(160,164)
(161,163);
s1 := Sym(170)!( 1, 9)( 2, 8)( 3, 14)( 4, 13)( 5, 12)( 6, 11)( 7, 10)
( 15, 16)( 17, 21)( 18, 20)( 22, 30)( 23, 29)( 24, 35)( 25, 34)( 26, 33)
( 27, 32)( 28, 31)( 36, 37)( 38, 42)( 39, 41)( 43, 72)( 44, 71)( 45, 77)
( 46, 76)( 47, 75)( 48, 74)( 49, 73)( 50, 65)( 51, 64)( 52, 70)( 53, 69)
( 54, 68)( 55, 67)( 56, 66)( 57, 79)( 58, 78)( 59, 84)( 60, 83)( 61, 82)
( 62, 81)( 63, 80)( 85,135)( 86,134)( 87,140)( 88,139)( 89,138)( 90,137)
( 91,136)( 92,128)( 93,127)( 94,133)( 95,132)( 96,131)( 97,130)( 98,129)
( 99,142)(100,141)(101,147)(102,146)(103,145)(104,144)(105,143)(106,156)
(107,155)(108,161)(109,160)(110,159)(111,158)(112,157)(113,149)(114,148)
(115,154)(116,153)(117,152)(118,151)(119,150)(120,163)(121,162)(122,168)
(123,167)(124,166)(125,165)(126,164);
s2 := Sym(170)!( 1, 85)( 2, 86)( 3, 87)( 4, 88)( 5, 89)( 6, 90)( 7, 91)
( 8, 92)( 9, 93)( 10, 94)( 11, 95)( 12, 96)( 13, 97)( 14, 98)( 15, 99)
( 16,100)( 17,101)( 18,102)( 19,103)( 20,104)( 21,105)( 22,106)( 23,107)
( 24,108)( 25,109)( 26,110)( 27,111)( 28,112)( 29,113)( 30,114)( 31,115)
( 32,116)( 33,117)( 34,118)( 35,119)( 36,120)( 37,121)( 38,122)( 39,123)
( 40,124)( 41,125)( 42,126)( 43,148)( 44,149)( 45,150)( 46,151)( 47,152)
( 48,153)( 49,154)( 50,155)( 51,156)( 52,157)( 53,158)( 54,159)( 55,160)
( 56,161)( 57,162)( 58,163)( 59,164)( 60,165)( 61,166)( 62,167)( 63,168)
( 64,127)( 65,128)( 66,129)( 67,130)( 68,131)( 69,132)( 70,133)( 71,134)
( 72,135)( 73,136)( 74,137)( 75,138)( 76,139)( 77,140)( 78,141)( 79,142)
( 80,143)( 81,144)( 82,145)( 83,146)( 84,147);
s3 := Sym(170)!(169,170);
poly := sub<Sym(170)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope