Polytope of Type {14,8,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,8,2}*448
if this polytope has a name.
Group : SmallGroup(448,1207)
Rank : 4
Schlafli Type : {14,8,2}
Number of vertices, edges, etc : 14, 56, 8, 2
Order of s0s1s2s3 : 56
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {14,8,2,2} of size 896
   {14,8,2,3} of size 1344
   {14,8,2,4} of size 1792
Vertex Figure Of :
   {2,14,8,2} of size 896
   {4,14,8,2} of size 1792
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {14,4,2}*224
   4-fold quotients : {14,2,2}*112
   7-fold quotients : {2,8,2}*64
   8-fold quotients : {7,2,2}*56
   14-fold quotients : {2,4,2}*32
   28-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {28,8,2}*896a, {14,8,4}*896a, {14,16,2}*896
   3-fold covers : {14,24,2}*1344, {14,8,6}*1344, {42,8,2}*1344
   4-fold covers : {14,8,4}*1792a, {28,8,2}*1792a, {14,8,8}*1792b, {14,8,8}*1792c, {56,8,2}*1792a, {56,8,2}*1792c, {28,8,4}*1792d, {14,16,4}*1792a, {28,16,2}*1792a, {14,16,4}*1792b, {28,16,2}*1792b, {14,32,2}*1792
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)
(24,27)(25,26)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(44,49)(45,48)(46,47)
(51,56)(52,55)(53,54);;
s1 := ( 1, 2)( 3, 7)( 4, 6)( 8, 9)(10,14)(11,13)(15,23)(16,22)(17,28)(18,27)
(19,26)(20,25)(21,24)(29,44)(30,43)(31,49)(32,48)(33,47)(34,46)(35,45)(36,51)
(37,50)(38,56)(39,55)(40,54)(41,53)(42,52);;
s2 := ( 1,29)( 2,30)( 3,31)( 4,32)( 5,33)( 6,34)( 7,35)( 8,36)( 9,37)(10,38)
(11,39)(12,40)(13,41)(14,42)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)
(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49);;
s3 := (57,58);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(58)!( 2, 7)( 3, 6)( 4, 5)( 9,14)(10,13)(11,12)(16,21)(17,20)(18,19)
(23,28)(24,27)(25,26)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(44,49)(45,48)
(46,47)(51,56)(52,55)(53,54);
s1 := Sym(58)!( 1, 2)( 3, 7)( 4, 6)( 8, 9)(10,14)(11,13)(15,23)(16,22)(17,28)
(18,27)(19,26)(20,25)(21,24)(29,44)(30,43)(31,49)(32,48)(33,47)(34,46)(35,45)
(36,51)(37,50)(38,56)(39,55)(40,54)(41,53)(42,52);
s2 := Sym(58)!( 1,29)( 2,30)( 3,31)( 4,32)( 5,33)( 6,34)( 7,35)( 8,36)( 9,37)
(10,38)(11,39)(12,40)(13,41)(14,42)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)
(21,56)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49);
s3 := Sym(58)!(57,58);
poly := sub<Sym(58)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope