include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,84,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,84,2}*1344c
if this polytope has a name.
Group : SmallGroup(1344,11397)
Rank : 4
Schlafli Type : {4,84,2}
Number of vertices, edges, etc : 4, 168, 84, 2
Order of s0s1s2s3 : 84
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,42,2}*672b
4-fold quotients : {4,21,2}*336
7-fold quotients : {4,12,2}*192c
14-fold quotients : {4,6,2}*96c
28-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 87)( 2, 88)( 3, 85)( 4, 86)( 5, 91)( 6, 92)( 7, 89)( 8, 90)
( 9, 95)( 10, 96)( 11, 93)( 12, 94)( 13, 99)( 14,100)( 15, 97)( 16, 98)
( 17,103)( 18,104)( 19,101)( 20,102)( 21,107)( 22,108)( 23,105)( 24,106)
( 25,111)( 26,112)( 27,109)( 28,110)( 29,115)( 30,116)( 31,113)( 32,114)
( 33,119)( 34,120)( 35,117)( 36,118)( 37,123)( 38,124)( 39,121)( 40,122)
( 41,127)( 42,128)( 43,125)( 44,126)( 45,131)( 46,132)( 47,129)( 48,130)
( 49,135)( 50,136)( 51,133)( 52,134)( 53,139)( 54,140)( 55,137)( 56,138)
( 57,143)( 58,144)( 59,141)( 60,142)( 61,147)( 62,148)( 63,145)( 64,146)
( 65,151)( 66,152)( 67,149)( 68,150)( 69,155)( 70,156)( 71,153)( 72,154)
( 73,159)( 74,160)( 75,157)( 76,158)( 77,163)( 78,164)( 79,161)( 80,162)
( 81,167)( 82,168)( 83,165)( 84,166)(169,255)(170,256)(171,253)(172,254)
(173,259)(174,260)(175,257)(176,258)(177,263)(178,264)(179,261)(180,262)
(181,267)(182,268)(183,265)(184,266)(185,271)(186,272)(187,269)(188,270)
(189,275)(190,276)(191,273)(192,274)(193,279)(194,280)(195,277)(196,278)
(197,283)(198,284)(199,281)(200,282)(201,287)(202,288)(203,285)(204,286)
(205,291)(206,292)(207,289)(208,290)(209,295)(210,296)(211,293)(212,294)
(213,299)(214,300)(215,297)(216,298)(217,303)(218,304)(219,301)(220,302)
(221,307)(222,308)(223,305)(224,306)(225,311)(226,312)(227,309)(228,310)
(229,315)(230,316)(231,313)(232,314)(233,319)(234,320)(235,317)(236,318)
(237,323)(238,324)(239,321)(240,322)(241,327)(242,328)(243,325)(244,326)
(245,331)(246,332)(247,329)(248,330)(249,335)(250,336)(251,333)(252,334);;
s1 := ( 2, 3)( 5, 25)( 6, 27)( 7, 26)( 8, 28)( 9, 21)( 10, 23)( 11, 22)
( 12, 24)( 13, 17)( 14, 19)( 15, 18)( 16, 20)( 29, 57)( 30, 59)( 31, 58)
( 32, 60)( 33, 81)( 34, 83)( 35, 82)( 36, 84)( 37, 77)( 38, 79)( 39, 78)
( 40, 80)( 41, 73)( 42, 75)( 43, 74)( 44, 76)( 45, 69)( 46, 71)( 47, 70)
( 48, 72)( 49, 65)( 50, 67)( 51, 66)( 52, 68)( 53, 61)( 54, 63)( 55, 62)
( 56, 64)( 86, 87)( 89,109)( 90,111)( 91,110)( 92,112)( 93,105)( 94,107)
( 95,106)( 96,108)( 97,101)( 98,103)( 99,102)(100,104)(113,141)(114,143)
(115,142)(116,144)(117,165)(118,167)(119,166)(120,168)(121,161)(122,163)
(123,162)(124,164)(125,157)(126,159)(127,158)(128,160)(129,153)(130,155)
(131,154)(132,156)(133,149)(134,151)(135,150)(136,152)(137,145)(138,147)
(139,146)(140,148)(169,253)(170,255)(171,254)(172,256)(173,277)(174,279)
(175,278)(176,280)(177,273)(178,275)(179,274)(180,276)(181,269)(182,271)
(183,270)(184,272)(185,265)(186,267)(187,266)(188,268)(189,261)(190,263)
(191,262)(192,264)(193,257)(194,259)(195,258)(196,260)(197,309)(198,311)
(199,310)(200,312)(201,333)(202,335)(203,334)(204,336)(205,329)(206,331)
(207,330)(208,332)(209,325)(210,327)(211,326)(212,328)(213,321)(214,323)
(215,322)(216,324)(217,317)(218,319)(219,318)(220,320)(221,313)(222,315)
(223,314)(224,316)(225,281)(226,283)(227,282)(228,284)(229,305)(230,307)
(231,306)(232,308)(233,301)(234,303)(235,302)(236,304)(237,297)(238,299)
(239,298)(240,300)(241,293)(242,295)(243,294)(244,296)(245,289)(246,291)
(247,290)(248,292)(249,285)(250,287)(251,286)(252,288);;
s2 := ( 1,229)( 2,232)( 3,231)( 4,230)( 5,225)( 6,228)( 7,227)( 8,226)
( 9,249)( 10,252)( 11,251)( 12,250)( 13,245)( 14,248)( 15,247)( 16,246)
( 17,241)( 18,244)( 19,243)( 20,242)( 21,237)( 22,240)( 23,239)( 24,238)
( 25,233)( 26,236)( 27,235)( 28,234)( 29,201)( 30,204)( 31,203)( 32,202)
( 33,197)( 34,200)( 35,199)( 36,198)( 37,221)( 38,224)( 39,223)( 40,222)
( 41,217)( 42,220)( 43,219)( 44,218)( 45,213)( 46,216)( 47,215)( 48,214)
( 49,209)( 50,212)( 51,211)( 52,210)( 53,205)( 54,208)( 55,207)( 56,206)
( 57,173)( 58,176)( 59,175)( 60,174)( 61,169)( 62,172)( 63,171)( 64,170)
( 65,193)( 66,196)( 67,195)( 68,194)( 69,189)( 70,192)( 71,191)( 72,190)
( 73,185)( 74,188)( 75,187)( 76,186)( 77,181)( 78,184)( 79,183)( 80,182)
( 81,177)( 82,180)( 83,179)( 84,178)( 85,313)( 86,316)( 87,315)( 88,314)
( 89,309)( 90,312)( 91,311)( 92,310)( 93,333)( 94,336)( 95,335)( 96,334)
( 97,329)( 98,332)( 99,331)(100,330)(101,325)(102,328)(103,327)(104,326)
(105,321)(106,324)(107,323)(108,322)(109,317)(110,320)(111,319)(112,318)
(113,285)(114,288)(115,287)(116,286)(117,281)(118,284)(119,283)(120,282)
(121,305)(122,308)(123,307)(124,306)(125,301)(126,304)(127,303)(128,302)
(129,297)(130,300)(131,299)(132,298)(133,293)(134,296)(135,295)(136,294)
(137,289)(138,292)(139,291)(140,290)(141,257)(142,260)(143,259)(144,258)
(145,253)(146,256)(147,255)(148,254)(149,277)(150,280)(151,279)(152,278)
(153,273)(154,276)(155,275)(156,274)(157,269)(158,272)(159,271)(160,270)
(161,265)(162,268)(163,267)(164,266)(165,261)(166,264)(167,263)(168,262);;
s3 := (337,338);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(338)!( 1, 87)( 2, 88)( 3, 85)( 4, 86)( 5, 91)( 6, 92)( 7, 89)
( 8, 90)( 9, 95)( 10, 96)( 11, 93)( 12, 94)( 13, 99)( 14,100)( 15, 97)
( 16, 98)( 17,103)( 18,104)( 19,101)( 20,102)( 21,107)( 22,108)( 23,105)
( 24,106)( 25,111)( 26,112)( 27,109)( 28,110)( 29,115)( 30,116)( 31,113)
( 32,114)( 33,119)( 34,120)( 35,117)( 36,118)( 37,123)( 38,124)( 39,121)
( 40,122)( 41,127)( 42,128)( 43,125)( 44,126)( 45,131)( 46,132)( 47,129)
( 48,130)( 49,135)( 50,136)( 51,133)( 52,134)( 53,139)( 54,140)( 55,137)
( 56,138)( 57,143)( 58,144)( 59,141)( 60,142)( 61,147)( 62,148)( 63,145)
( 64,146)( 65,151)( 66,152)( 67,149)( 68,150)( 69,155)( 70,156)( 71,153)
( 72,154)( 73,159)( 74,160)( 75,157)( 76,158)( 77,163)( 78,164)( 79,161)
( 80,162)( 81,167)( 82,168)( 83,165)( 84,166)(169,255)(170,256)(171,253)
(172,254)(173,259)(174,260)(175,257)(176,258)(177,263)(178,264)(179,261)
(180,262)(181,267)(182,268)(183,265)(184,266)(185,271)(186,272)(187,269)
(188,270)(189,275)(190,276)(191,273)(192,274)(193,279)(194,280)(195,277)
(196,278)(197,283)(198,284)(199,281)(200,282)(201,287)(202,288)(203,285)
(204,286)(205,291)(206,292)(207,289)(208,290)(209,295)(210,296)(211,293)
(212,294)(213,299)(214,300)(215,297)(216,298)(217,303)(218,304)(219,301)
(220,302)(221,307)(222,308)(223,305)(224,306)(225,311)(226,312)(227,309)
(228,310)(229,315)(230,316)(231,313)(232,314)(233,319)(234,320)(235,317)
(236,318)(237,323)(238,324)(239,321)(240,322)(241,327)(242,328)(243,325)
(244,326)(245,331)(246,332)(247,329)(248,330)(249,335)(250,336)(251,333)
(252,334);
s1 := Sym(338)!( 2, 3)( 5, 25)( 6, 27)( 7, 26)( 8, 28)( 9, 21)( 10, 23)
( 11, 22)( 12, 24)( 13, 17)( 14, 19)( 15, 18)( 16, 20)( 29, 57)( 30, 59)
( 31, 58)( 32, 60)( 33, 81)( 34, 83)( 35, 82)( 36, 84)( 37, 77)( 38, 79)
( 39, 78)( 40, 80)( 41, 73)( 42, 75)( 43, 74)( 44, 76)( 45, 69)( 46, 71)
( 47, 70)( 48, 72)( 49, 65)( 50, 67)( 51, 66)( 52, 68)( 53, 61)( 54, 63)
( 55, 62)( 56, 64)( 86, 87)( 89,109)( 90,111)( 91,110)( 92,112)( 93,105)
( 94,107)( 95,106)( 96,108)( 97,101)( 98,103)( 99,102)(100,104)(113,141)
(114,143)(115,142)(116,144)(117,165)(118,167)(119,166)(120,168)(121,161)
(122,163)(123,162)(124,164)(125,157)(126,159)(127,158)(128,160)(129,153)
(130,155)(131,154)(132,156)(133,149)(134,151)(135,150)(136,152)(137,145)
(138,147)(139,146)(140,148)(169,253)(170,255)(171,254)(172,256)(173,277)
(174,279)(175,278)(176,280)(177,273)(178,275)(179,274)(180,276)(181,269)
(182,271)(183,270)(184,272)(185,265)(186,267)(187,266)(188,268)(189,261)
(190,263)(191,262)(192,264)(193,257)(194,259)(195,258)(196,260)(197,309)
(198,311)(199,310)(200,312)(201,333)(202,335)(203,334)(204,336)(205,329)
(206,331)(207,330)(208,332)(209,325)(210,327)(211,326)(212,328)(213,321)
(214,323)(215,322)(216,324)(217,317)(218,319)(219,318)(220,320)(221,313)
(222,315)(223,314)(224,316)(225,281)(226,283)(227,282)(228,284)(229,305)
(230,307)(231,306)(232,308)(233,301)(234,303)(235,302)(236,304)(237,297)
(238,299)(239,298)(240,300)(241,293)(242,295)(243,294)(244,296)(245,289)
(246,291)(247,290)(248,292)(249,285)(250,287)(251,286)(252,288);
s2 := Sym(338)!( 1,229)( 2,232)( 3,231)( 4,230)( 5,225)( 6,228)( 7,227)
( 8,226)( 9,249)( 10,252)( 11,251)( 12,250)( 13,245)( 14,248)( 15,247)
( 16,246)( 17,241)( 18,244)( 19,243)( 20,242)( 21,237)( 22,240)( 23,239)
( 24,238)( 25,233)( 26,236)( 27,235)( 28,234)( 29,201)( 30,204)( 31,203)
( 32,202)( 33,197)( 34,200)( 35,199)( 36,198)( 37,221)( 38,224)( 39,223)
( 40,222)( 41,217)( 42,220)( 43,219)( 44,218)( 45,213)( 46,216)( 47,215)
( 48,214)( 49,209)( 50,212)( 51,211)( 52,210)( 53,205)( 54,208)( 55,207)
( 56,206)( 57,173)( 58,176)( 59,175)( 60,174)( 61,169)( 62,172)( 63,171)
( 64,170)( 65,193)( 66,196)( 67,195)( 68,194)( 69,189)( 70,192)( 71,191)
( 72,190)( 73,185)( 74,188)( 75,187)( 76,186)( 77,181)( 78,184)( 79,183)
( 80,182)( 81,177)( 82,180)( 83,179)( 84,178)( 85,313)( 86,316)( 87,315)
( 88,314)( 89,309)( 90,312)( 91,311)( 92,310)( 93,333)( 94,336)( 95,335)
( 96,334)( 97,329)( 98,332)( 99,331)(100,330)(101,325)(102,328)(103,327)
(104,326)(105,321)(106,324)(107,323)(108,322)(109,317)(110,320)(111,319)
(112,318)(113,285)(114,288)(115,287)(116,286)(117,281)(118,284)(119,283)
(120,282)(121,305)(122,308)(123,307)(124,306)(125,301)(126,304)(127,303)
(128,302)(129,297)(130,300)(131,299)(132,298)(133,293)(134,296)(135,295)
(136,294)(137,289)(138,292)(139,291)(140,290)(141,257)(142,260)(143,259)
(144,258)(145,253)(146,256)(147,255)(148,254)(149,277)(150,280)(151,279)
(152,278)(153,273)(154,276)(155,275)(156,274)(157,269)(158,272)(159,271)
(160,270)(161,265)(162,268)(163,267)(164,266)(165,261)(166,264)(167,263)
(168,262);
s3 := Sym(338)!(337,338);
poly := sub<Sym(338)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope