Polytope of Type {4,21,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,21,2}*336
if this polytope has a name.
Group : SmallGroup(336,215)
Rank : 4
Schlafli Type : {4,21,2}
Number of vertices, edges, etc : 4, 42, 21, 2
Order of s0s1s2s3 : 42
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,21,2,2} of size 672
   {4,21,2,3} of size 1008
   {4,21,2,4} of size 1344
   {4,21,2,5} of size 1680
Vertex Figure Of :
   {2,4,21,2} of size 672
Quotients (Maximal Quotients in Boldface) :
   7-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,21,2}*672, {4,42,2}*672b, {4,42,2}*672c
   3-fold covers : {4,63,2}*1008, {4,21,6}*1008
   4-fold covers : {4,84,2}*1344b, {4,84,2}*1344c, {4,42,4}*1344c, {8,21,2}*1344, {4,42,2}*1344, {4,21,4}*1344a
   5-fold covers : {4,105,2}*1680
Permutation Representation (GAP) :
s0 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28);;
s1 := ( 2, 3)( 5,25)( 6,27)( 7,26)( 8,28)( 9,21)(10,23)(11,22)(12,24)(13,17)
(14,19)(15,18)(16,20);;
s2 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,25)(10,26)(11,28)(12,27)(13,21)(14,22)
(15,24)(16,23)(19,20);;
s3 := (29,30);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(30)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(19,20)(21,22)(23,24)(25,26)(27,28);
s1 := Sym(30)!( 2, 3)( 5,25)( 6,27)( 7,26)( 8,28)( 9,21)(10,23)(11,22)(12,24)
(13,17)(14,19)(15,18)(16,20);
s2 := Sym(30)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,25)(10,26)(11,28)(12,27)(13,21)
(14,22)(15,24)(16,23)(19,20);
s3 := Sym(30)!(29,30);
poly := sub<Sym(30)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope