Polytope of Type {4,168}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,168}*1344a
Also Known As : {4,168|2}. if this polytope has another name.
Group : SmallGroup(1344,5658)
Rank : 3
Schlafli Type : {4,168}
Number of vertices, edges, etc : 4, 336, 168
Order of s0s1s2 : 168
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,84}*672a, {2,168}*672
   3-fold quotients : {4,56}*448a
   4-fold quotients : {2,84}*336, {4,42}*336a
   6-fold quotients : {4,28}*224, {2,56}*224
   7-fold quotients : {4,24}*192a
   8-fold quotients : {2,42}*168
   12-fold quotients : {2,28}*112, {4,14}*112
   14-fold quotients : {4,12}*96a, {2,24}*96
   16-fold quotients : {2,21}*84
   21-fold quotients : {4,8}*64a
   24-fold quotients : {2,14}*56
   28-fold quotients : {2,12}*48, {4,6}*48a
   42-fold quotients : {4,4}*32, {2,8}*32
   48-fold quotients : {2,7}*28
   56-fold quotients : {2,6}*24
   84-fold quotients : {2,4}*16, {4,2}*16
   112-fold quotients : {2,3}*12
   168-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (169,253)(170,254)(171,255)(172,256)(173,257)(174,258)(175,259)(176,260)
(177,261)(178,262)(179,263)(180,264)(181,265)(182,266)(183,267)(184,268)
(185,269)(186,270)(187,271)(188,272)(189,273)(190,274)(191,275)(192,276)
(193,277)(194,278)(195,279)(196,280)(197,281)(198,282)(199,283)(200,284)
(201,285)(202,286)(203,287)(204,288)(205,289)(206,290)(207,291)(208,292)
(209,293)(210,294)(211,295)(212,296)(213,297)(214,298)(215,299)(216,300)
(217,301)(218,302)(219,303)(220,304)(221,305)(222,306)(223,307)(224,308)
(225,309)(226,310)(227,311)(228,312)(229,313)(230,314)(231,315)(232,316)
(233,317)(234,318)(235,319)(236,320)(237,321)(238,322)(239,323)(240,324)
(241,325)(242,326)(243,327)(244,328)(245,329)(246,330)(247,331)(248,332)
(249,333)(250,334)(251,335)(252,336);;
s1 := (  1,169)(  2,175)(  3,174)(  4,173)(  5,172)(  6,171)(  7,170)(  8,183)
(  9,189)( 10,188)( 11,187)( 12,186)( 13,185)( 14,184)( 15,176)( 16,182)
( 17,181)( 18,180)( 19,179)( 20,178)( 21,177)( 22,190)( 23,196)( 24,195)
( 25,194)( 26,193)( 27,192)( 28,191)( 29,204)( 30,210)( 31,209)( 32,208)
( 33,207)( 34,206)( 35,205)( 36,197)( 37,203)( 38,202)( 39,201)( 40,200)
( 41,199)( 42,198)( 43,232)( 44,238)( 45,237)( 46,236)( 47,235)( 48,234)
( 49,233)( 50,246)( 51,252)( 52,251)( 53,250)( 54,249)( 55,248)( 56,247)
( 57,239)( 58,245)( 59,244)( 60,243)( 61,242)( 62,241)( 63,240)( 64,211)
( 65,217)( 66,216)( 67,215)( 68,214)( 69,213)( 70,212)( 71,225)( 72,231)
( 73,230)( 74,229)( 75,228)( 76,227)( 77,226)( 78,218)( 79,224)( 80,223)
( 81,222)( 82,221)( 83,220)( 84,219)( 85,253)( 86,259)( 87,258)( 88,257)
( 89,256)( 90,255)( 91,254)( 92,267)( 93,273)( 94,272)( 95,271)( 96,270)
( 97,269)( 98,268)( 99,260)(100,266)(101,265)(102,264)(103,263)(104,262)
(105,261)(106,274)(107,280)(108,279)(109,278)(110,277)(111,276)(112,275)
(113,288)(114,294)(115,293)(116,292)(117,291)(118,290)(119,289)(120,281)
(121,287)(122,286)(123,285)(124,284)(125,283)(126,282)(127,316)(128,322)
(129,321)(130,320)(131,319)(132,318)(133,317)(134,330)(135,336)(136,335)
(137,334)(138,333)(139,332)(140,331)(141,323)(142,329)(143,328)(144,327)
(145,326)(146,325)(147,324)(148,295)(149,301)(150,300)(151,299)(152,298)
(153,297)(154,296)(155,309)(156,315)(157,314)(158,313)(159,312)(160,311)
(161,310)(162,302)(163,308)(164,307)(165,306)(166,305)(167,304)(168,303);;
s2 := (  1,  9)(  2,  8)(  3, 14)(  4, 13)(  5, 12)(  6, 11)(  7, 10)( 15, 16)
( 17, 21)( 18, 20)( 22, 30)( 23, 29)( 24, 35)( 25, 34)( 26, 33)( 27, 32)
( 28, 31)( 36, 37)( 38, 42)( 39, 41)( 43, 72)( 44, 71)( 45, 77)( 46, 76)
( 47, 75)( 48, 74)( 49, 73)( 50, 65)( 51, 64)( 52, 70)( 53, 69)( 54, 68)
( 55, 67)( 56, 66)( 57, 79)( 58, 78)( 59, 84)( 60, 83)( 61, 82)( 62, 81)
( 63, 80)( 85, 93)( 86, 92)( 87, 98)( 88, 97)( 89, 96)( 90, 95)( 91, 94)
( 99,100)(101,105)(102,104)(106,114)(107,113)(108,119)(109,118)(110,117)
(111,116)(112,115)(120,121)(122,126)(123,125)(127,156)(128,155)(129,161)
(130,160)(131,159)(132,158)(133,157)(134,149)(135,148)(136,154)(137,153)
(138,152)(139,151)(140,150)(141,163)(142,162)(143,168)(144,167)(145,166)
(146,165)(147,164)(169,219)(170,218)(171,224)(172,223)(173,222)(174,221)
(175,220)(176,212)(177,211)(178,217)(179,216)(180,215)(181,214)(182,213)
(183,226)(184,225)(185,231)(186,230)(187,229)(188,228)(189,227)(190,240)
(191,239)(192,245)(193,244)(194,243)(195,242)(196,241)(197,233)(198,232)
(199,238)(200,237)(201,236)(202,235)(203,234)(204,247)(205,246)(206,252)
(207,251)(208,250)(209,249)(210,248)(253,303)(254,302)(255,308)(256,307)
(257,306)(258,305)(259,304)(260,296)(261,295)(262,301)(263,300)(264,299)
(265,298)(266,297)(267,310)(268,309)(269,315)(270,314)(271,313)(272,312)
(273,311)(274,324)(275,323)(276,329)(277,328)(278,327)(279,326)(280,325)
(281,317)(282,316)(283,322)(284,321)(285,320)(286,319)(287,318)(288,331)
(289,330)(290,336)(291,335)(292,334)(293,333)(294,332);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(336)!(169,253)(170,254)(171,255)(172,256)(173,257)(174,258)(175,259)
(176,260)(177,261)(178,262)(179,263)(180,264)(181,265)(182,266)(183,267)
(184,268)(185,269)(186,270)(187,271)(188,272)(189,273)(190,274)(191,275)
(192,276)(193,277)(194,278)(195,279)(196,280)(197,281)(198,282)(199,283)
(200,284)(201,285)(202,286)(203,287)(204,288)(205,289)(206,290)(207,291)
(208,292)(209,293)(210,294)(211,295)(212,296)(213,297)(214,298)(215,299)
(216,300)(217,301)(218,302)(219,303)(220,304)(221,305)(222,306)(223,307)
(224,308)(225,309)(226,310)(227,311)(228,312)(229,313)(230,314)(231,315)
(232,316)(233,317)(234,318)(235,319)(236,320)(237,321)(238,322)(239,323)
(240,324)(241,325)(242,326)(243,327)(244,328)(245,329)(246,330)(247,331)
(248,332)(249,333)(250,334)(251,335)(252,336);
s1 := Sym(336)!(  1,169)(  2,175)(  3,174)(  4,173)(  5,172)(  6,171)(  7,170)
(  8,183)(  9,189)( 10,188)( 11,187)( 12,186)( 13,185)( 14,184)( 15,176)
( 16,182)( 17,181)( 18,180)( 19,179)( 20,178)( 21,177)( 22,190)( 23,196)
( 24,195)( 25,194)( 26,193)( 27,192)( 28,191)( 29,204)( 30,210)( 31,209)
( 32,208)( 33,207)( 34,206)( 35,205)( 36,197)( 37,203)( 38,202)( 39,201)
( 40,200)( 41,199)( 42,198)( 43,232)( 44,238)( 45,237)( 46,236)( 47,235)
( 48,234)( 49,233)( 50,246)( 51,252)( 52,251)( 53,250)( 54,249)( 55,248)
( 56,247)( 57,239)( 58,245)( 59,244)( 60,243)( 61,242)( 62,241)( 63,240)
( 64,211)( 65,217)( 66,216)( 67,215)( 68,214)( 69,213)( 70,212)( 71,225)
( 72,231)( 73,230)( 74,229)( 75,228)( 76,227)( 77,226)( 78,218)( 79,224)
( 80,223)( 81,222)( 82,221)( 83,220)( 84,219)( 85,253)( 86,259)( 87,258)
( 88,257)( 89,256)( 90,255)( 91,254)( 92,267)( 93,273)( 94,272)( 95,271)
( 96,270)( 97,269)( 98,268)( 99,260)(100,266)(101,265)(102,264)(103,263)
(104,262)(105,261)(106,274)(107,280)(108,279)(109,278)(110,277)(111,276)
(112,275)(113,288)(114,294)(115,293)(116,292)(117,291)(118,290)(119,289)
(120,281)(121,287)(122,286)(123,285)(124,284)(125,283)(126,282)(127,316)
(128,322)(129,321)(130,320)(131,319)(132,318)(133,317)(134,330)(135,336)
(136,335)(137,334)(138,333)(139,332)(140,331)(141,323)(142,329)(143,328)
(144,327)(145,326)(146,325)(147,324)(148,295)(149,301)(150,300)(151,299)
(152,298)(153,297)(154,296)(155,309)(156,315)(157,314)(158,313)(159,312)
(160,311)(161,310)(162,302)(163,308)(164,307)(165,306)(166,305)(167,304)
(168,303);
s2 := Sym(336)!(  1,  9)(  2,  8)(  3, 14)(  4, 13)(  5, 12)(  6, 11)(  7, 10)
( 15, 16)( 17, 21)( 18, 20)( 22, 30)( 23, 29)( 24, 35)( 25, 34)( 26, 33)
( 27, 32)( 28, 31)( 36, 37)( 38, 42)( 39, 41)( 43, 72)( 44, 71)( 45, 77)
( 46, 76)( 47, 75)( 48, 74)( 49, 73)( 50, 65)( 51, 64)( 52, 70)( 53, 69)
( 54, 68)( 55, 67)( 56, 66)( 57, 79)( 58, 78)( 59, 84)( 60, 83)( 61, 82)
( 62, 81)( 63, 80)( 85, 93)( 86, 92)( 87, 98)( 88, 97)( 89, 96)( 90, 95)
( 91, 94)( 99,100)(101,105)(102,104)(106,114)(107,113)(108,119)(109,118)
(110,117)(111,116)(112,115)(120,121)(122,126)(123,125)(127,156)(128,155)
(129,161)(130,160)(131,159)(132,158)(133,157)(134,149)(135,148)(136,154)
(137,153)(138,152)(139,151)(140,150)(141,163)(142,162)(143,168)(144,167)
(145,166)(146,165)(147,164)(169,219)(170,218)(171,224)(172,223)(173,222)
(174,221)(175,220)(176,212)(177,211)(178,217)(179,216)(180,215)(181,214)
(182,213)(183,226)(184,225)(185,231)(186,230)(187,229)(188,228)(189,227)
(190,240)(191,239)(192,245)(193,244)(194,243)(195,242)(196,241)(197,233)
(198,232)(199,238)(200,237)(201,236)(202,235)(203,234)(204,247)(205,246)
(206,252)(207,251)(208,250)(209,249)(210,248)(253,303)(254,302)(255,308)
(256,307)(257,306)(258,305)(259,304)(260,296)(261,295)(262,301)(263,300)
(264,299)(265,298)(266,297)(267,310)(268,309)(269,315)(270,314)(271,313)
(272,312)(273,311)(274,324)(275,323)(276,329)(277,328)(278,327)(279,326)
(280,325)(281,317)(282,316)(283,322)(284,321)(285,320)(286,319)(287,318)
(288,331)(289,330)(290,336)(291,335)(292,334)(293,333)(294,332);
poly := sub<Sym(336)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope