include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,168}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,168}*1344b
if this polytope has a name.
Group : SmallGroup(1344,5673)
Rank : 3
Schlafli Type : {4,168}
Number of vertices, edges, etc : 4, 336, 168
Order of s0s1s2 : 168
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,84}*672a
3-fold quotients : {4,56}*448b
4-fold quotients : {2,84}*336, {4,42}*336a
6-fold quotients : {4,28}*224
7-fold quotients : {4,24}*192b
8-fold quotients : {2,42}*168
12-fold quotients : {2,28}*112, {4,14}*112
14-fold quotients : {4,12}*96a
16-fold quotients : {2,21}*84
21-fold quotients : {4,8}*64b
24-fold quotients : {2,14}*56
28-fold quotients : {2,12}*48, {4,6}*48a
42-fold quotients : {4,4}*32
48-fold quotients : {2,7}*28
56-fold quotients : {2,6}*24
84-fold quotients : {2,4}*16, {4,2}*16
112-fold quotients : {2,3}*12
168-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 43, 64)( 44, 65)( 45, 66)( 46, 67)( 47, 68)( 48, 69)( 49, 70)( 50, 71)
( 51, 72)( 52, 73)( 53, 74)( 54, 75)( 55, 76)( 56, 77)( 57, 78)( 58, 79)
( 59, 80)( 60, 81)( 61, 82)( 62, 83)( 63, 84)(127,148)(128,149)(129,150)
(130,151)(131,152)(132,153)(133,154)(134,155)(135,156)(136,157)(137,158)
(138,159)(139,160)(140,161)(141,162)(142,163)(143,164)(144,165)(145,166)
(146,167)(147,168)(169,253)(170,254)(171,255)(172,256)(173,257)(174,258)
(175,259)(176,260)(177,261)(178,262)(179,263)(180,264)(181,265)(182,266)
(183,267)(184,268)(185,269)(186,270)(187,271)(188,272)(189,273)(190,274)
(191,275)(192,276)(193,277)(194,278)(195,279)(196,280)(197,281)(198,282)
(199,283)(200,284)(201,285)(202,286)(203,287)(204,288)(205,289)(206,290)
(207,291)(208,292)(209,293)(210,294)(211,316)(212,317)(213,318)(214,319)
(215,320)(216,321)(217,322)(218,323)(219,324)(220,325)(221,326)(222,327)
(223,328)(224,329)(225,330)(226,331)(227,332)(228,333)(229,334)(230,335)
(231,336)(232,295)(233,296)(234,297)(235,298)(236,299)(237,300)(238,301)
(239,302)(240,303)(241,304)(242,305)(243,306)(244,307)(245,308)(246,309)
(247,310)(248,311)(249,312)(250,313)(251,314)(252,315);;
s1 := ( 1,169)( 2,175)( 3,174)( 4,173)( 5,172)( 6,171)( 7,170)( 8,183)
( 9,189)( 10,188)( 11,187)( 12,186)( 13,185)( 14,184)( 15,176)( 16,182)
( 17,181)( 18,180)( 19,179)( 20,178)( 21,177)( 22,190)( 23,196)( 24,195)
( 25,194)( 26,193)( 27,192)( 28,191)( 29,204)( 30,210)( 31,209)( 32,208)
( 33,207)( 34,206)( 35,205)( 36,197)( 37,203)( 38,202)( 39,201)( 40,200)
( 41,199)( 42,198)( 43,232)( 44,238)( 45,237)( 46,236)( 47,235)( 48,234)
( 49,233)( 50,246)( 51,252)( 52,251)( 53,250)( 54,249)( 55,248)( 56,247)
( 57,239)( 58,245)( 59,244)( 60,243)( 61,242)( 62,241)( 63,240)( 64,211)
( 65,217)( 66,216)( 67,215)( 68,214)( 69,213)( 70,212)( 71,225)( 72,231)
( 73,230)( 74,229)( 75,228)( 76,227)( 77,226)( 78,218)( 79,224)( 80,223)
( 81,222)( 82,221)( 83,220)( 84,219)( 85,253)( 86,259)( 87,258)( 88,257)
( 89,256)( 90,255)( 91,254)( 92,267)( 93,273)( 94,272)( 95,271)( 96,270)
( 97,269)( 98,268)( 99,260)(100,266)(101,265)(102,264)(103,263)(104,262)
(105,261)(106,274)(107,280)(108,279)(109,278)(110,277)(111,276)(112,275)
(113,288)(114,294)(115,293)(116,292)(117,291)(118,290)(119,289)(120,281)
(121,287)(122,286)(123,285)(124,284)(125,283)(126,282)(127,316)(128,322)
(129,321)(130,320)(131,319)(132,318)(133,317)(134,330)(135,336)(136,335)
(137,334)(138,333)(139,332)(140,331)(141,323)(142,329)(143,328)(144,327)
(145,326)(146,325)(147,324)(148,295)(149,301)(150,300)(151,299)(152,298)
(153,297)(154,296)(155,309)(156,315)(157,314)(158,313)(159,312)(160,311)
(161,310)(162,302)(163,308)(164,307)(165,306)(166,305)(167,304)(168,303);;
s2 := ( 1, 9)( 2, 8)( 3, 14)( 4, 13)( 5, 12)( 6, 11)( 7, 10)( 15, 16)
( 17, 21)( 18, 20)( 22, 30)( 23, 29)( 24, 35)( 25, 34)( 26, 33)( 27, 32)
( 28, 31)( 36, 37)( 38, 42)( 39, 41)( 43, 72)( 44, 71)( 45, 77)( 46, 76)
( 47, 75)( 48, 74)( 49, 73)( 50, 65)( 51, 64)( 52, 70)( 53, 69)( 54, 68)
( 55, 67)( 56, 66)( 57, 79)( 58, 78)( 59, 84)( 60, 83)( 61, 82)( 62, 81)
( 63, 80)( 85,114)( 86,113)( 87,119)( 88,118)( 89,117)( 90,116)( 91,115)
( 92,107)( 93,106)( 94,112)( 95,111)( 96,110)( 97,109)( 98,108)( 99,121)
(100,120)(101,126)(102,125)(103,124)(104,123)(105,122)(127,135)(128,134)
(129,140)(130,139)(131,138)(132,137)(133,136)(141,142)(143,147)(144,146)
(148,156)(149,155)(150,161)(151,160)(152,159)(153,158)(154,157)(162,163)
(164,168)(165,167)(169,219)(170,218)(171,224)(172,223)(173,222)(174,221)
(175,220)(176,212)(177,211)(178,217)(179,216)(180,215)(181,214)(182,213)
(183,226)(184,225)(185,231)(186,230)(187,229)(188,228)(189,227)(190,240)
(191,239)(192,245)(193,244)(194,243)(195,242)(196,241)(197,233)(198,232)
(199,238)(200,237)(201,236)(202,235)(203,234)(204,247)(205,246)(206,252)
(207,251)(208,250)(209,249)(210,248)(253,324)(254,323)(255,329)(256,328)
(257,327)(258,326)(259,325)(260,317)(261,316)(262,322)(263,321)(264,320)
(265,319)(266,318)(267,331)(268,330)(269,336)(270,335)(271,334)(272,333)
(273,332)(274,303)(275,302)(276,308)(277,307)(278,306)(279,305)(280,304)
(281,296)(282,295)(283,301)(284,300)(285,299)(286,298)(287,297)(288,310)
(289,309)(290,315)(291,314)(292,313)(293,312)(294,311);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(336)!( 43, 64)( 44, 65)( 45, 66)( 46, 67)( 47, 68)( 48, 69)( 49, 70)
( 50, 71)( 51, 72)( 52, 73)( 53, 74)( 54, 75)( 55, 76)( 56, 77)( 57, 78)
( 58, 79)( 59, 80)( 60, 81)( 61, 82)( 62, 83)( 63, 84)(127,148)(128,149)
(129,150)(130,151)(131,152)(132,153)(133,154)(134,155)(135,156)(136,157)
(137,158)(138,159)(139,160)(140,161)(141,162)(142,163)(143,164)(144,165)
(145,166)(146,167)(147,168)(169,253)(170,254)(171,255)(172,256)(173,257)
(174,258)(175,259)(176,260)(177,261)(178,262)(179,263)(180,264)(181,265)
(182,266)(183,267)(184,268)(185,269)(186,270)(187,271)(188,272)(189,273)
(190,274)(191,275)(192,276)(193,277)(194,278)(195,279)(196,280)(197,281)
(198,282)(199,283)(200,284)(201,285)(202,286)(203,287)(204,288)(205,289)
(206,290)(207,291)(208,292)(209,293)(210,294)(211,316)(212,317)(213,318)
(214,319)(215,320)(216,321)(217,322)(218,323)(219,324)(220,325)(221,326)
(222,327)(223,328)(224,329)(225,330)(226,331)(227,332)(228,333)(229,334)
(230,335)(231,336)(232,295)(233,296)(234,297)(235,298)(236,299)(237,300)
(238,301)(239,302)(240,303)(241,304)(242,305)(243,306)(244,307)(245,308)
(246,309)(247,310)(248,311)(249,312)(250,313)(251,314)(252,315);
s1 := Sym(336)!( 1,169)( 2,175)( 3,174)( 4,173)( 5,172)( 6,171)( 7,170)
( 8,183)( 9,189)( 10,188)( 11,187)( 12,186)( 13,185)( 14,184)( 15,176)
( 16,182)( 17,181)( 18,180)( 19,179)( 20,178)( 21,177)( 22,190)( 23,196)
( 24,195)( 25,194)( 26,193)( 27,192)( 28,191)( 29,204)( 30,210)( 31,209)
( 32,208)( 33,207)( 34,206)( 35,205)( 36,197)( 37,203)( 38,202)( 39,201)
( 40,200)( 41,199)( 42,198)( 43,232)( 44,238)( 45,237)( 46,236)( 47,235)
( 48,234)( 49,233)( 50,246)( 51,252)( 52,251)( 53,250)( 54,249)( 55,248)
( 56,247)( 57,239)( 58,245)( 59,244)( 60,243)( 61,242)( 62,241)( 63,240)
( 64,211)( 65,217)( 66,216)( 67,215)( 68,214)( 69,213)( 70,212)( 71,225)
( 72,231)( 73,230)( 74,229)( 75,228)( 76,227)( 77,226)( 78,218)( 79,224)
( 80,223)( 81,222)( 82,221)( 83,220)( 84,219)( 85,253)( 86,259)( 87,258)
( 88,257)( 89,256)( 90,255)( 91,254)( 92,267)( 93,273)( 94,272)( 95,271)
( 96,270)( 97,269)( 98,268)( 99,260)(100,266)(101,265)(102,264)(103,263)
(104,262)(105,261)(106,274)(107,280)(108,279)(109,278)(110,277)(111,276)
(112,275)(113,288)(114,294)(115,293)(116,292)(117,291)(118,290)(119,289)
(120,281)(121,287)(122,286)(123,285)(124,284)(125,283)(126,282)(127,316)
(128,322)(129,321)(130,320)(131,319)(132,318)(133,317)(134,330)(135,336)
(136,335)(137,334)(138,333)(139,332)(140,331)(141,323)(142,329)(143,328)
(144,327)(145,326)(146,325)(147,324)(148,295)(149,301)(150,300)(151,299)
(152,298)(153,297)(154,296)(155,309)(156,315)(157,314)(158,313)(159,312)
(160,311)(161,310)(162,302)(163,308)(164,307)(165,306)(166,305)(167,304)
(168,303);
s2 := Sym(336)!( 1, 9)( 2, 8)( 3, 14)( 4, 13)( 5, 12)( 6, 11)( 7, 10)
( 15, 16)( 17, 21)( 18, 20)( 22, 30)( 23, 29)( 24, 35)( 25, 34)( 26, 33)
( 27, 32)( 28, 31)( 36, 37)( 38, 42)( 39, 41)( 43, 72)( 44, 71)( 45, 77)
( 46, 76)( 47, 75)( 48, 74)( 49, 73)( 50, 65)( 51, 64)( 52, 70)( 53, 69)
( 54, 68)( 55, 67)( 56, 66)( 57, 79)( 58, 78)( 59, 84)( 60, 83)( 61, 82)
( 62, 81)( 63, 80)( 85,114)( 86,113)( 87,119)( 88,118)( 89,117)( 90,116)
( 91,115)( 92,107)( 93,106)( 94,112)( 95,111)( 96,110)( 97,109)( 98,108)
( 99,121)(100,120)(101,126)(102,125)(103,124)(104,123)(105,122)(127,135)
(128,134)(129,140)(130,139)(131,138)(132,137)(133,136)(141,142)(143,147)
(144,146)(148,156)(149,155)(150,161)(151,160)(152,159)(153,158)(154,157)
(162,163)(164,168)(165,167)(169,219)(170,218)(171,224)(172,223)(173,222)
(174,221)(175,220)(176,212)(177,211)(178,217)(179,216)(180,215)(181,214)
(182,213)(183,226)(184,225)(185,231)(186,230)(187,229)(188,228)(189,227)
(190,240)(191,239)(192,245)(193,244)(194,243)(195,242)(196,241)(197,233)
(198,232)(199,238)(200,237)(201,236)(202,235)(203,234)(204,247)(205,246)
(206,252)(207,251)(208,250)(209,249)(210,248)(253,324)(254,323)(255,329)
(256,328)(257,327)(258,326)(259,325)(260,317)(261,316)(262,322)(263,321)
(264,320)(265,319)(266,318)(267,331)(268,330)(269,336)(270,335)(271,334)
(272,333)(273,332)(274,303)(275,302)(276,308)(277,307)(278,306)(279,305)
(280,304)(281,296)(282,295)(283,301)(284,300)(285,299)(286,298)(287,297)
(288,310)(289,309)(290,315)(291,314)(292,313)(293,312)(294,311);
poly := sub<Sym(336)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1 >;
References : None.
to this polytope