include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {168,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {168,4}*1344b
if this polytope has a name.
Group : SmallGroup(1344,5673)
Rank : 3
Schlafli Type : {168,4}
Number of vertices, edges, etc : 168, 336, 4
Order of s0s1s2 : 168
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {84,4}*672a
3-fold quotients : {56,4}*448b
4-fold quotients : {84,2}*336, {42,4}*336a
6-fold quotients : {28,4}*224
7-fold quotients : {24,4}*192b
8-fold quotients : {42,2}*168
12-fold quotients : {28,2}*112, {14,4}*112
14-fold quotients : {12,4}*96a
16-fold quotients : {21,2}*84
21-fold quotients : {8,4}*64b
24-fold quotients : {14,2}*56
28-fold quotients : {12,2}*48, {6,4}*48a
42-fold quotients : {4,4}*32
48-fold quotients : {7,2}*28
56-fold quotients : {6,2}*24
84-fold quotients : {2,4}*16, {4,2}*16
112-fold quotients : {3,2}*12
168-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 8, 15)( 9, 21)( 10, 20)( 11, 19)( 12, 18)
( 13, 17)( 14, 16)( 23, 28)( 24, 27)( 25, 26)( 29, 36)( 30, 42)( 31, 41)
( 32, 40)( 33, 39)( 34, 38)( 35, 37)( 43, 64)( 44, 70)( 45, 69)( 46, 68)
( 47, 67)( 48, 66)( 49, 65)( 50, 78)( 51, 84)( 52, 83)( 53, 82)( 54, 81)
( 55, 80)( 56, 79)( 57, 71)( 58, 77)( 59, 76)( 60, 75)( 61, 74)( 62, 73)
( 63, 72)( 85,106)( 86,112)( 87,111)( 88,110)( 89,109)( 90,108)( 91,107)
( 92,120)( 93,126)( 94,125)( 95,124)( 96,123)( 97,122)( 98,121)( 99,113)
(100,119)(101,118)(102,117)(103,116)(104,115)(105,114)(128,133)(129,132)
(130,131)(134,141)(135,147)(136,146)(137,145)(138,144)(139,143)(140,142)
(149,154)(150,153)(151,152)(155,162)(156,168)(157,167)(158,166)(159,165)
(160,164)(161,163)(169,211)(170,217)(171,216)(172,215)(173,214)(174,213)
(175,212)(176,225)(177,231)(178,230)(179,229)(180,228)(181,227)(182,226)
(183,218)(184,224)(185,223)(186,222)(187,221)(188,220)(189,219)(190,232)
(191,238)(192,237)(193,236)(194,235)(195,234)(196,233)(197,246)(198,252)
(199,251)(200,250)(201,249)(202,248)(203,247)(204,239)(205,245)(206,244)
(207,243)(208,242)(209,241)(210,240)(253,316)(254,322)(255,321)(256,320)
(257,319)(258,318)(259,317)(260,330)(261,336)(262,335)(263,334)(264,333)
(265,332)(266,331)(267,323)(268,329)(269,328)(270,327)(271,326)(272,325)
(273,324)(274,295)(275,301)(276,300)(277,299)(278,298)(279,297)(280,296)
(281,309)(282,315)(283,314)(284,313)(285,312)(286,311)(287,310)(288,302)
(289,308)(290,307)(291,306)(292,305)(293,304)(294,303);;
s1 := ( 1,177)( 2,176)( 3,182)( 4,181)( 5,180)( 6,179)( 7,178)( 8,170)
( 9,169)( 10,175)( 11,174)( 12,173)( 13,172)( 14,171)( 15,184)( 16,183)
( 17,189)( 18,188)( 19,187)( 20,186)( 21,185)( 22,198)( 23,197)( 24,203)
( 25,202)( 26,201)( 27,200)( 28,199)( 29,191)( 30,190)( 31,196)( 32,195)
( 33,194)( 34,193)( 35,192)( 36,205)( 37,204)( 38,210)( 39,209)( 40,208)
( 41,207)( 42,206)( 43,240)( 44,239)( 45,245)( 46,244)( 47,243)( 48,242)
( 49,241)( 50,233)( 51,232)( 52,238)( 53,237)( 54,236)( 55,235)( 56,234)
( 57,247)( 58,246)( 59,252)( 60,251)( 61,250)( 62,249)( 63,248)( 64,219)
( 65,218)( 66,224)( 67,223)( 68,222)( 69,221)( 70,220)( 71,212)( 72,211)
( 73,217)( 74,216)( 75,215)( 76,214)( 77,213)( 78,226)( 79,225)( 80,231)
( 81,230)( 82,229)( 83,228)( 84,227)( 85,261)( 86,260)( 87,266)( 88,265)
( 89,264)( 90,263)( 91,262)( 92,254)( 93,253)( 94,259)( 95,258)( 96,257)
( 97,256)( 98,255)( 99,268)(100,267)(101,273)(102,272)(103,271)(104,270)
(105,269)(106,282)(107,281)(108,287)(109,286)(110,285)(111,284)(112,283)
(113,275)(114,274)(115,280)(116,279)(117,278)(118,277)(119,276)(120,289)
(121,288)(122,294)(123,293)(124,292)(125,291)(126,290)(127,324)(128,323)
(129,329)(130,328)(131,327)(132,326)(133,325)(134,317)(135,316)(136,322)
(137,321)(138,320)(139,319)(140,318)(141,331)(142,330)(143,336)(144,335)
(145,334)(146,333)(147,332)(148,303)(149,302)(150,308)(151,307)(152,306)
(153,305)(154,304)(155,296)(156,295)(157,301)(158,300)(159,299)(160,298)
(161,297)(162,310)(163,309)(164,315)(165,314)(166,313)(167,312)(168,311);;
s2 := ( 43, 64)( 44, 65)( 45, 66)( 46, 67)( 47, 68)( 48, 69)( 49, 70)( 50, 71)
( 51, 72)( 52, 73)( 53, 74)( 54, 75)( 55, 76)( 56, 77)( 57, 78)( 58, 79)
( 59, 80)( 60, 81)( 61, 82)( 62, 83)( 63, 84)(127,148)(128,149)(129,150)
(130,151)(131,152)(132,153)(133,154)(134,155)(135,156)(136,157)(137,158)
(138,159)(139,160)(140,161)(141,162)(142,163)(143,164)(144,165)(145,166)
(146,167)(147,168)(169,253)(170,254)(171,255)(172,256)(173,257)(174,258)
(175,259)(176,260)(177,261)(178,262)(179,263)(180,264)(181,265)(182,266)
(183,267)(184,268)(185,269)(186,270)(187,271)(188,272)(189,273)(190,274)
(191,275)(192,276)(193,277)(194,278)(195,279)(196,280)(197,281)(198,282)
(199,283)(200,284)(201,285)(202,286)(203,287)(204,288)(205,289)(206,290)
(207,291)(208,292)(209,293)(210,294)(211,316)(212,317)(213,318)(214,319)
(215,320)(216,321)(217,322)(218,323)(219,324)(220,325)(221,326)(222,327)
(223,328)(224,329)(225,330)(226,331)(227,332)(228,333)(229,334)(230,335)
(231,336)(232,295)(233,296)(234,297)(235,298)(236,299)(237,300)(238,301)
(239,302)(240,303)(241,304)(242,305)(243,306)(244,307)(245,308)(246,309)
(247,310)(248,311)(249,312)(250,313)(251,314)(252,315);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(336)!( 2, 7)( 3, 6)( 4, 5)( 8, 15)( 9, 21)( 10, 20)( 11, 19)
( 12, 18)( 13, 17)( 14, 16)( 23, 28)( 24, 27)( 25, 26)( 29, 36)( 30, 42)
( 31, 41)( 32, 40)( 33, 39)( 34, 38)( 35, 37)( 43, 64)( 44, 70)( 45, 69)
( 46, 68)( 47, 67)( 48, 66)( 49, 65)( 50, 78)( 51, 84)( 52, 83)( 53, 82)
( 54, 81)( 55, 80)( 56, 79)( 57, 71)( 58, 77)( 59, 76)( 60, 75)( 61, 74)
( 62, 73)( 63, 72)( 85,106)( 86,112)( 87,111)( 88,110)( 89,109)( 90,108)
( 91,107)( 92,120)( 93,126)( 94,125)( 95,124)( 96,123)( 97,122)( 98,121)
( 99,113)(100,119)(101,118)(102,117)(103,116)(104,115)(105,114)(128,133)
(129,132)(130,131)(134,141)(135,147)(136,146)(137,145)(138,144)(139,143)
(140,142)(149,154)(150,153)(151,152)(155,162)(156,168)(157,167)(158,166)
(159,165)(160,164)(161,163)(169,211)(170,217)(171,216)(172,215)(173,214)
(174,213)(175,212)(176,225)(177,231)(178,230)(179,229)(180,228)(181,227)
(182,226)(183,218)(184,224)(185,223)(186,222)(187,221)(188,220)(189,219)
(190,232)(191,238)(192,237)(193,236)(194,235)(195,234)(196,233)(197,246)
(198,252)(199,251)(200,250)(201,249)(202,248)(203,247)(204,239)(205,245)
(206,244)(207,243)(208,242)(209,241)(210,240)(253,316)(254,322)(255,321)
(256,320)(257,319)(258,318)(259,317)(260,330)(261,336)(262,335)(263,334)
(264,333)(265,332)(266,331)(267,323)(268,329)(269,328)(270,327)(271,326)
(272,325)(273,324)(274,295)(275,301)(276,300)(277,299)(278,298)(279,297)
(280,296)(281,309)(282,315)(283,314)(284,313)(285,312)(286,311)(287,310)
(288,302)(289,308)(290,307)(291,306)(292,305)(293,304)(294,303);
s1 := Sym(336)!( 1,177)( 2,176)( 3,182)( 4,181)( 5,180)( 6,179)( 7,178)
( 8,170)( 9,169)( 10,175)( 11,174)( 12,173)( 13,172)( 14,171)( 15,184)
( 16,183)( 17,189)( 18,188)( 19,187)( 20,186)( 21,185)( 22,198)( 23,197)
( 24,203)( 25,202)( 26,201)( 27,200)( 28,199)( 29,191)( 30,190)( 31,196)
( 32,195)( 33,194)( 34,193)( 35,192)( 36,205)( 37,204)( 38,210)( 39,209)
( 40,208)( 41,207)( 42,206)( 43,240)( 44,239)( 45,245)( 46,244)( 47,243)
( 48,242)( 49,241)( 50,233)( 51,232)( 52,238)( 53,237)( 54,236)( 55,235)
( 56,234)( 57,247)( 58,246)( 59,252)( 60,251)( 61,250)( 62,249)( 63,248)
( 64,219)( 65,218)( 66,224)( 67,223)( 68,222)( 69,221)( 70,220)( 71,212)
( 72,211)( 73,217)( 74,216)( 75,215)( 76,214)( 77,213)( 78,226)( 79,225)
( 80,231)( 81,230)( 82,229)( 83,228)( 84,227)( 85,261)( 86,260)( 87,266)
( 88,265)( 89,264)( 90,263)( 91,262)( 92,254)( 93,253)( 94,259)( 95,258)
( 96,257)( 97,256)( 98,255)( 99,268)(100,267)(101,273)(102,272)(103,271)
(104,270)(105,269)(106,282)(107,281)(108,287)(109,286)(110,285)(111,284)
(112,283)(113,275)(114,274)(115,280)(116,279)(117,278)(118,277)(119,276)
(120,289)(121,288)(122,294)(123,293)(124,292)(125,291)(126,290)(127,324)
(128,323)(129,329)(130,328)(131,327)(132,326)(133,325)(134,317)(135,316)
(136,322)(137,321)(138,320)(139,319)(140,318)(141,331)(142,330)(143,336)
(144,335)(145,334)(146,333)(147,332)(148,303)(149,302)(150,308)(151,307)
(152,306)(153,305)(154,304)(155,296)(156,295)(157,301)(158,300)(159,299)
(160,298)(161,297)(162,310)(163,309)(164,315)(165,314)(166,313)(167,312)
(168,311);
s2 := Sym(336)!( 43, 64)( 44, 65)( 45, 66)( 46, 67)( 47, 68)( 48, 69)( 49, 70)
( 50, 71)( 51, 72)( 52, 73)( 53, 74)( 54, 75)( 55, 76)( 56, 77)( 57, 78)
( 58, 79)( 59, 80)( 60, 81)( 61, 82)( 62, 83)( 63, 84)(127,148)(128,149)
(129,150)(130,151)(131,152)(132,153)(133,154)(134,155)(135,156)(136,157)
(137,158)(138,159)(139,160)(140,161)(141,162)(142,163)(143,164)(144,165)
(145,166)(146,167)(147,168)(169,253)(170,254)(171,255)(172,256)(173,257)
(174,258)(175,259)(176,260)(177,261)(178,262)(179,263)(180,264)(181,265)
(182,266)(183,267)(184,268)(185,269)(186,270)(187,271)(188,272)(189,273)
(190,274)(191,275)(192,276)(193,277)(194,278)(195,279)(196,280)(197,281)
(198,282)(199,283)(200,284)(201,285)(202,286)(203,287)(204,288)(205,289)
(206,290)(207,291)(208,292)(209,293)(210,294)(211,316)(212,317)(213,318)
(214,319)(215,320)(216,321)(217,322)(218,323)(219,324)(220,325)(221,326)
(222,327)(223,328)(224,329)(225,330)(226,331)(227,332)(228,333)(229,334)
(230,335)(231,336)(232,295)(233,296)(234,297)(235,298)(236,299)(237,300)
(238,301)(239,302)(240,303)(241,304)(242,305)(243,306)(244,307)(245,308)
(246,309)(247,310)(248,311)(249,312)(250,313)(251,314)(252,315);
poly := sub<Sym(336)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope