include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {21,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {21,8}*1344
if this polytope has a name.
Group : SmallGroup(1344,6454)
Rank : 3
Schlafli Type : {21,8}
Number of vertices, edges, etc : 84, 336, 32
Order of s0s1s2 : 42
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
4-fold quotients : {21,4}*336
7-fold quotients : {3,8}*192
8-fold quotients : {21,4}*168
16-fold quotients : {21,2}*84
28-fold quotients : {3,4}*48
48-fold quotients : {7,2}*28
56-fold quotients : {3,4}*24
112-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 97)( 18, 98)
( 19,100)( 20, 99)( 21,102)( 22,101)( 23,103)( 24,104)( 25,109)( 26,110)
( 27,112)( 28,111)( 29,105)( 30,106)( 31,108)( 32,107)( 33, 81)( 34, 82)
( 35, 84)( 36, 83)( 37, 86)( 38, 85)( 39, 87)( 40, 88)( 41, 93)( 42, 94)
( 43, 96)( 44, 95)( 45, 89)( 46, 90)( 47, 92)( 48, 91)( 49, 65)( 50, 66)
( 51, 68)( 52, 67)( 53, 70)( 54, 69)( 55, 71)( 56, 72)( 57, 77)( 58, 78)
( 59, 80)( 60, 79)( 61, 73)( 62, 74)( 63, 76)( 64, 75);;
s1 := ( 1, 17)( 2, 20)( 3, 19)( 4, 18)( 5, 30)( 6, 31)( 7, 32)( 8, 29)
( 9, 25)( 10, 28)( 11, 27)( 12, 26)( 13, 24)( 14, 21)( 15, 22)( 16, 23)
( 33, 97)( 34,100)( 35, 99)( 36, 98)( 37,110)( 38,111)( 39,112)( 40,109)
( 41,105)( 42,108)( 43,107)( 44,106)( 45,104)( 46,101)( 47,102)( 48,103)
( 49, 81)( 50, 84)( 51, 83)( 52, 82)( 53, 94)( 54, 95)( 55, 96)( 56, 93)
( 57, 89)( 58, 92)( 59, 91)( 60, 90)( 61, 88)( 62, 85)( 63, 86)( 64, 87)
( 66, 68)( 69, 78)( 70, 79)( 71, 80)( 72, 77)( 74, 76);;
s2 := ( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9, 13)( 10, 14)( 11, 15)( 12, 16)
( 17, 23)( 18, 24)( 19, 21)( 20, 22)( 25, 29)( 26, 30)( 27, 31)( 28, 32)
( 33, 39)( 34, 40)( 35, 37)( 36, 38)( 41, 45)( 42, 46)( 43, 47)( 44, 48)
( 49, 55)( 50, 56)( 51, 53)( 52, 54)( 57, 61)( 58, 62)( 59, 63)( 60, 64)
( 65, 71)( 66, 72)( 67, 69)( 68, 70)( 73, 77)( 74, 78)( 75, 79)( 76, 80)
( 81, 87)( 82, 88)( 83, 85)( 84, 86)( 89, 93)( 90, 94)( 91, 95)( 92, 96)
( 97,103)( 98,104)( 99,101)(100,102)(105,109)(106,110)(107,111)(108,112);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(112)!( 3, 4)( 5, 6)( 9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 97)
( 18, 98)( 19,100)( 20, 99)( 21,102)( 22,101)( 23,103)( 24,104)( 25,109)
( 26,110)( 27,112)( 28,111)( 29,105)( 30,106)( 31,108)( 32,107)( 33, 81)
( 34, 82)( 35, 84)( 36, 83)( 37, 86)( 38, 85)( 39, 87)( 40, 88)( 41, 93)
( 42, 94)( 43, 96)( 44, 95)( 45, 89)( 46, 90)( 47, 92)( 48, 91)( 49, 65)
( 50, 66)( 51, 68)( 52, 67)( 53, 70)( 54, 69)( 55, 71)( 56, 72)( 57, 77)
( 58, 78)( 59, 80)( 60, 79)( 61, 73)( 62, 74)( 63, 76)( 64, 75);
s1 := Sym(112)!( 1, 17)( 2, 20)( 3, 19)( 4, 18)( 5, 30)( 6, 31)( 7, 32)
( 8, 29)( 9, 25)( 10, 28)( 11, 27)( 12, 26)( 13, 24)( 14, 21)( 15, 22)
( 16, 23)( 33, 97)( 34,100)( 35, 99)( 36, 98)( 37,110)( 38,111)( 39,112)
( 40,109)( 41,105)( 42,108)( 43,107)( 44,106)( 45,104)( 46,101)( 47,102)
( 48,103)( 49, 81)( 50, 84)( 51, 83)( 52, 82)( 53, 94)( 54, 95)( 55, 96)
( 56, 93)( 57, 89)( 58, 92)( 59, 91)( 60, 90)( 61, 88)( 62, 85)( 63, 86)
( 64, 87)( 66, 68)( 69, 78)( 70, 79)( 71, 80)( 72, 77)( 74, 76);
s2 := Sym(112)!( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9, 13)( 10, 14)( 11, 15)
( 12, 16)( 17, 23)( 18, 24)( 19, 21)( 20, 22)( 25, 29)( 26, 30)( 27, 31)
( 28, 32)( 33, 39)( 34, 40)( 35, 37)( 36, 38)( 41, 45)( 42, 46)( 43, 47)
( 44, 48)( 49, 55)( 50, 56)( 51, 53)( 52, 54)( 57, 61)( 58, 62)( 59, 63)
( 60, 64)( 65, 71)( 66, 72)( 67, 69)( 68, 70)( 73, 77)( 74, 78)( 75, 79)
( 76, 80)( 81, 87)( 82, 88)( 83, 85)( 84, 86)( 89, 93)( 90, 94)( 91, 95)
( 92, 96)( 97,103)( 98,104)( 99,101)(100,102)(105,109)(106,110)(107,111)
(108,112);
poly := sub<Sym(112)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope