include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {21,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {21,4}*168
if this polytope has a name.
Group : SmallGroup(168,46)
Rank : 3
Schlafli Type : {21,4}
Number of vertices, edges, etc : 21, 42, 4
Order of s0s1s2 : 21
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
{21,4,2} of size 336
{21,4,4} of size 1344
Vertex Figure Of :
{2,21,4} of size 336
{4,21,4} of size 672
{6,21,4} of size 1008
{4,21,4} of size 1344
Quotients (Maximal Quotients in Boldface) :
7-fold quotients : {3,4}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {21,4}*336, {42,4}*336b, {42,4}*336c
3-fold covers : {63,4}*504
4-fold covers : {84,4}*672b, {84,4}*672c, {21,8}*672, {42,4}*672
5-fold covers : {105,4}*840
6-fold covers : {63,4}*1008, {126,4}*1008b, {126,4}*1008c, {21,12}*1008, {42,12}*1008d
7-fold covers : {147,4}*1176
8-fold covers : {42,4}*1344a, {21,8}*1344, {42,8}*1344a, {168,4}*1344c, {168,4}*1344d, {84,4}*1344b, {42,4}*1344b, {84,4}*1344c, {42,8}*1344b, {42,8}*1344c
9-fold covers : {189,4}*1512
10-fold covers : {42,20}*1680b, {105,4}*1680, {210,4}*1680b, {210,4}*1680c
11-fold covers : {231,4}*1848
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5,25)( 6,26)( 7,28)( 8,27)( 9,21)(10,22)(11,24)(12,23)(13,17)
(14,18)(15,20)(16,19);;
s1 := ( 1, 5)( 2, 7)( 3, 6)( 4, 8)( 9,25)(10,27)(11,26)(12,28)(13,21)(14,23)
(15,22)(16,24)(18,19);;
s2 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(28)!( 3, 4)( 5,25)( 6,26)( 7,28)( 8,27)( 9,21)(10,22)(11,24)(12,23)
(13,17)(14,18)(15,20)(16,19);
s1 := Sym(28)!( 1, 5)( 2, 7)( 3, 6)( 4, 8)( 9,25)(10,27)(11,26)(12,28)(13,21)
(14,23)(15,22)(16,24)(18,19);
s2 := Sym(28)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(19,20)(21,22)(23,24)(25,26)(27,28);
poly := sub<Sym(28)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope