include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {28,12,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {28,12,2}*1344
if this polytope has a name.
Group : SmallGroup(1344,9160)
Rank : 4
Schlafli Type : {28,12,2}
Number of vertices, edges, etc : 28, 168, 12, 2
Order of s0s1s2s3 : 84
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {14,12,2}*672, {28,6,2}*672a
3-fold quotients : {28,4,2}*448
4-fold quotients : {14,6,2}*336
6-fold quotients : {28,2,2}*224, {14,4,2}*224
7-fold quotients : {4,12,2}*192a
12-fold quotients : {14,2,2}*112
14-fold quotients : {2,12,2}*96, {4,6,2}*96a
21-fold quotients : {4,4,2}*64
24-fold quotients : {7,2,2}*56
28-fold quotients : {2,6,2}*48
42-fold quotients : {2,4,2}*32, {4,2,2}*32
56-fold quotients : {2,3,2}*24
84-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 9, 14)( 10, 13)( 11, 12)( 16, 21)( 17, 20)
( 18, 19)( 23, 28)( 24, 27)( 25, 26)( 30, 35)( 31, 34)( 32, 33)( 37, 42)
( 38, 41)( 39, 40)( 44, 49)( 45, 48)( 46, 47)( 51, 56)( 52, 55)( 53, 54)
( 58, 63)( 59, 62)( 60, 61)( 65, 70)( 66, 69)( 67, 68)( 72, 77)( 73, 76)
( 74, 75)( 79, 84)( 80, 83)( 81, 82)( 85,127)( 86,133)( 87,132)( 88,131)
( 89,130)( 90,129)( 91,128)( 92,134)( 93,140)( 94,139)( 95,138)( 96,137)
( 97,136)( 98,135)( 99,141)(100,147)(101,146)(102,145)(103,144)(104,143)
(105,142)(106,148)(107,154)(108,153)(109,152)(110,151)(111,150)(112,149)
(113,155)(114,161)(115,160)(116,159)(117,158)(118,157)(119,156)(120,162)
(121,168)(122,167)(123,166)(124,165)(125,164)(126,163);;
s1 := ( 1, 86)( 2, 85)( 3, 91)( 4, 90)( 5, 89)( 6, 88)( 7, 87)( 8,100)
( 9, 99)( 10,105)( 11,104)( 12,103)( 13,102)( 14,101)( 15, 93)( 16, 92)
( 17, 98)( 18, 97)( 19, 96)( 20, 95)( 21, 94)( 22,107)( 23,106)( 24,112)
( 25,111)( 26,110)( 27,109)( 28,108)( 29,121)( 30,120)( 31,126)( 32,125)
( 33,124)( 34,123)( 35,122)( 36,114)( 37,113)( 38,119)( 39,118)( 40,117)
( 41,116)( 42,115)( 43,128)( 44,127)( 45,133)( 46,132)( 47,131)( 48,130)
( 49,129)( 50,142)( 51,141)( 52,147)( 53,146)( 54,145)( 55,144)( 56,143)
( 57,135)( 58,134)( 59,140)( 60,139)( 61,138)( 62,137)( 63,136)( 64,149)
( 65,148)( 66,154)( 67,153)( 68,152)( 69,151)( 70,150)( 71,163)( 72,162)
( 73,168)( 74,167)( 75,166)( 76,165)( 77,164)( 78,156)( 79,155)( 80,161)
( 81,160)( 82,159)( 83,158)( 84,157);;
s2 := ( 1, 8)( 2, 9)( 3, 10)( 4, 11)( 5, 12)( 6, 13)( 7, 14)( 22, 29)
( 23, 30)( 24, 31)( 25, 32)( 26, 33)( 27, 34)( 28, 35)( 43, 50)( 44, 51)
( 45, 52)( 46, 53)( 47, 54)( 48, 55)( 49, 56)( 64, 71)( 65, 72)( 66, 73)
( 67, 74)( 68, 75)( 69, 76)( 70, 77)( 85,113)( 86,114)( 87,115)( 88,116)
( 89,117)( 90,118)( 91,119)( 92,106)( 93,107)( 94,108)( 95,109)( 96,110)
( 97,111)( 98,112)( 99,120)(100,121)(101,122)(102,123)(103,124)(104,125)
(105,126)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)
(134,148)(135,149)(136,150)(137,151)(138,152)(139,153)(140,154)(141,162)
(142,163)(143,164)(144,165)(145,166)(146,167)(147,168);;
s3 := (169,170);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(170)!( 2, 7)( 3, 6)( 4, 5)( 9, 14)( 10, 13)( 11, 12)( 16, 21)
( 17, 20)( 18, 19)( 23, 28)( 24, 27)( 25, 26)( 30, 35)( 31, 34)( 32, 33)
( 37, 42)( 38, 41)( 39, 40)( 44, 49)( 45, 48)( 46, 47)( 51, 56)( 52, 55)
( 53, 54)( 58, 63)( 59, 62)( 60, 61)( 65, 70)( 66, 69)( 67, 68)( 72, 77)
( 73, 76)( 74, 75)( 79, 84)( 80, 83)( 81, 82)( 85,127)( 86,133)( 87,132)
( 88,131)( 89,130)( 90,129)( 91,128)( 92,134)( 93,140)( 94,139)( 95,138)
( 96,137)( 97,136)( 98,135)( 99,141)(100,147)(101,146)(102,145)(103,144)
(104,143)(105,142)(106,148)(107,154)(108,153)(109,152)(110,151)(111,150)
(112,149)(113,155)(114,161)(115,160)(116,159)(117,158)(118,157)(119,156)
(120,162)(121,168)(122,167)(123,166)(124,165)(125,164)(126,163);
s1 := Sym(170)!( 1, 86)( 2, 85)( 3, 91)( 4, 90)( 5, 89)( 6, 88)( 7, 87)
( 8,100)( 9, 99)( 10,105)( 11,104)( 12,103)( 13,102)( 14,101)( 15, 93)
( 16, 92)( 17, 98)( 18, 97)( 19, 96)( 20, 95)( 21, 94)( 22,107)( 23,106)
( 24,112)( 25,111)( 26,110)( 27,109)( 28,108)( 29,121)( 30,120)( 31,126)
( 32,125)( 33,124)( 34,123)( 35,122)( 36,114)( 37,113)( 38,119)( 39,118)
( 40,117)( 41,116)( 42,115)( 43,128)( 44,127)( 45,133)( 46,132)( 47,131)
( 48,130)( 49,129)( 50,142)( 51,141)( 52,147)( 53,146)( 54,145)( 55,144)
( 56,143)( 57,135)( 58,134)( 59,140)( 60,139)( 61,138)( 62,137)( 63,136)
( 64,149)( 65,148)( 66,154)( 67,153)( 68,152)( 69,151)( 70,150)( 71,163)
( 72,162)( 73,168)( 74,167)( 75,166)( 76,165)( 77,164)( 78,156)( 79,155)
( 80,161)( 81,160)( 82,159)( 83,158)( 84,157);
s2 := Sym(170)!( 1, 8)( 2, 9)( 3, 10)( 4, 11)( 5, 12)( 6, 13)( 7, 14)
( 22, 29)( 23, 30)( 24, 31)( 25, 32)( 26, 33)( 27, 34)( 28, 35)( 43, 50)
( 44, 51)( 45, 52)( 46, 53)( 47, 54)( 48, 55)( 49, 56)( 64, 71)( 65, 72)
( 66, 73)( 67, 74)( 68, 75)( 69, 76)( 70, 77)( 85,113)( 86,114)( 87,115)
( 88,116)( 89,117)( 90,118)( 91,119)( 92,106)( 93,107)( 94,108)( 95,109)
( 96,110)( 97,111)( 98,112)( 99,120)(100,121)(101,122)(102,123)(103,124)
(104,125)(105,126)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)
(133,161)(134,148)(135,149)(136,150)(137,151)(138,152)(139,153)(140,154)
(141,162)(142,163)(143,164)(144,165)(145,166)(146,167)(147,168);
s3 := Sym(170)!(169,170);
poly := sub<Sym(170)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope