Polytope of Type {28,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {28,4,2}*448
if this polytope has a name.
Group : SmallGroup(448,940)
Rank : 4
Schlafli Type : {28,4,2}
Number of vertices, edges, etc : 28, 56, 4, 2
Order of s0s1s2s3 : 28
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {28,4,2,2} of size 896
   {28,4,2,3} of size 1344
   {28,4,2,4} of size 1792
Vertex Figure Of :
   {2,28,4,2} of size 896
   {4,28,4,2} of size 1792
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {28,2,2}*224, {14,4,2}*224
   4-fold quotients : {14,2,2}*112
   7-fold quotients : {4,4,2}*64
   8-fold quotients : {7,2,2}*56
   14-fold quotients : {2,4,2}*32, {4,2,2}*32
   28-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {28,4,4}*896, {56,4,2}*896a, {28,4,2}*896, {56,4,2}*896b, {28,8,2}*896a, {28,8,2}*896b
   3-fold covers : {28,4,6}*1344, {28,12,2}*1344, {84,4,2}*1344a
   4-fold covers : {28,8,2}*1792a, {56,4,2}*1792a, {56,8,2}*1792a, {56,8,2}*1792b, {56,8,2}*1792c, {56,8,2}*1792d, {28,4,8}*1792a, {56,4,4}*1792a, {28,4,8}*1792b, {56,4,4}*1792b, {28,8,4}*1792a, {28,4,4}*1792a, {28,4,4}*1792b, {28,8,4}*1792b, {28,8,4}*1792c, {28,8,4}*1792d, {28,16,2}*1792a, {112,4,2}*1792a, {28,16,2}*1792b, {112,4,2}*1792b, {28,4,2}*1792, {56,4,2}*1792b, {28,8,2}*1792b
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)
(24,27)(25,26)(29,43)(30,49)(31,48)(32,47)(33,46)(34,45)(35,44)(36,50)(37,56)
(38,55)(39,54)(40,53)(41,52)(42,51);;
s1 := ( 1,30)( 2,29)( 3,35)( 4,34)( 5,33)( 6,32)( 7,31)( 8,37)( 9,36)(10,42)
(11,41)(12,40)(13,39)(14,38)(15,44)(16,43)(17,49)(18,48)(19,47)(20,46)(21,45)
(22,51)(23,50)(24,56)(25,55)(26,54)(27,53)(28,52);;
s2 := (29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)
(46,53)(47,54)(48,55)(49,56);;
s3 := (57,58);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(58)!( 2, 7)( 3, 6)( 4, 5)( 9,14)(10,13)(11,12)(16,21)(17,20)(18,19)
(23,28)(24,27)(25,26)(29,43)(30,49)(31,48)(32,47)(33,46)(34,45)(35,44)(36,50)
(37,56)(38,55)(39,54)(40,53)(41,52)(42,51);
s1 := Sym(58)!( 1,30)( 2,29)( 3,35)( 4,34)( 5,33)( 6,32)( 7,31)( 8,37)( 9,36)
(10,42)(11,41)(12,40)(13,39)(14,38)(15,44)(16,43)(17,49)(18,48)(19,47)(20,46)
(21,45)(22,51)(23,50)(24,56)(25,55)(26,54)(27,53)(28,52);
s2 := Sym(58)!(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)
(45,52)(46,53)(47,54)(48,55)(49,56);
s3 := Sym(58)!(57,58);
poly := sub<Sym(58)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope