include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {340,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {340,2}*1360
if this polytope has a name.
Group : SmallGroup(1360,208)
Rank : 3
Schlafli Type : {340,2}
Number of vertices, edges, etc : 340, 340, 2
Order of s0s1s2 : 340
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {170,2}*680
4-fold quotients : {85,2}*340
5-fold quotients : {68,2}*272
10-fold quotients : {34,2}*136
17-fold quotients : {20,2}*80
20-fold quotients : {17,2}*68
34-fold quotients : {10,2}*40
68-fold quotients : {5,2}*20
85-fold quotients : {4,2}*16
170-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 17)( 3, 16)( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)( 9, 10)
( 18, 69)( 19, 85)( 20, 84)( 21, 83)( 22, 82)( 23, 81)( 24, 80)( 25, 79)
( 26, 78)( 27, 77)( 28, 76)( 29, 75)( 30, 74)( 31, 73)( 32, 72)( 33, 71)
( 34, 70)( 35, 52)( 36, 68)( 37, 67)( 38, 66)( 39, 65)( 40, 64)( 41, 63)
( 42, 62)( 43, 61)( 44, 60)( 45, 59)( 46, 58)( 47, 57)( 48, 56)( 49, 55)
( 50, 54)( 51, 53)( 87,102)( 88,101)( 89,100)( 90, 99)( 91, 98)( 92, 97)
( 93, 96)( 94, 95)(103,154)(104,170)(105,169)(106,168)(107,167)(108,166)
(109,165)(110,164)(111,163)(112,162)(113,161)(114,160)(115,159)(116,158)
(117,157)(118,156)(119,155)(120,137)(121,153)(122,152)(123,151)(124,150)
(125,149)(126,148)(127,147)(128,146)(129,145)(130,144)(131,143)(132,142)
(133,141)(134,140)(135,139)(136,138)(171,256)(172,272)(173,271)(174,270)
(175,269)(176,268)(177,267)(178,266)(179,265)(180,264)(181,263)(182,262)
(183,261)(184,260)(185,259)(186,258)(187,257)(188,324)(189,340)(190,339)
(191,338)(192,337)(193,336)(194,335)(195,334)(196,333)(197,332)(198,331)
(199,330)(200,329)(201,328)(202,327)(203,326)(204,325)(205,307)(206,323)
(207,322)(208,321)(209,320)(210,319)(211,318)(212,317)(213,316)(214,315)
(215,314)(216,313)(217,312)(218,311)(219,310)(220,309)(221,308)(222,290)
(223,306)(224,305)(225,304)(226,303)(227,302)(228,301)(229,300)(230,299)
(231,298)(232,297)(233,296)(234,295)(235,294)(236,293)(237,292)(238,291)
(239,273)(240,289)(241,288)(242,287)(243,286)(244,285)(245,284)(246,283)
(247,282)(248,281)(249,280)(250,279)(251,278)(252,277)(253,276)(254,275)
(255,274);;
s1 := ( 1,189)( 2,188)( 3,204)( 4,203)( 5,202)( 6,201)( 7,200)( 8,199)
( 9,198)( 10,197)( 11,196)( 12,195)( 13,194)( 14,193)( 15,192)( 16,191)
( 17,190)( 18,172)( 19,171)( 20,187)( 21,186)( 22,185)( 23,184)( 24,183)
( 25,182)( 26,181)( 27,180)( 28,179)( 29,178)( 30,177)( 31,176)( 32,175)
( 33,174)( 34,173)( 35,240)( 36,239)( 37,255)( 38,254)( 39,253)( 40,252)
( 41,251)( 42,250)( 43,249)( 44,248)( 45,247)( 46,246)( 47,245)( 48,244)
( 49,243)( 50,242)( 51,241)( 52,223)( 53,222)( 54,238)( 55,237)( 56,236)
( 57,235)( 58,234)( 59,233)( 60,232)( 61,231)( 62,230)( 63,229)( 64,228)
( 65,227)( 66,226)( 67,225)( 68,224)( 69,206)( 70,205)( 71,221)( 72,220)
( 73,219)( 74,218)( 75,217)( 76,216)( 77,215)( 78,214)( 79,213)( 80,212)
( 81,211)( 82,210)( 83,209)( 84,208)( 85,207)( 86,274)( 87,273)( 88,289)
( 89,288)( 90,287)( 91,286)( 92,285)( 93,284)( 94,283)( 95,282)( 96,281)
( 97,280)( 98,279)( 99,278)(100,277)(101,276)(102,275)(103,257)(104,256)
(105,272)(106,271)(107,270)(108,269)(109,268)(110,267)(111,266)(112,265)
(113,264)(114,263)(115,262)(116,261)(117,260)(118,259)(119,258)(120,325)
(121,324)(122,340)(123,339)(124,338)(125,337)(126,336)(127,335)(128,334)
(129,333)(130,332)(131,331)(132,330)(133,329)(134,328)(135,327)(136,326)
(137,308)(138,307)(139,323)(140,322)(141,321)(142,320)(143,319)(144,318)
(145,317)(146,316)(147,315)(148,314)(149,313)(150,312)(151,311)(152,310)
(153,309)(154,291)(155,290)(156,306)(157,305)(158,304)(159,303)(160,302)
(161,301)(162,300)(163,299)(164,298)(165,297)(166,296)(167,295)(168,294)
(169,293)(170,292);;
s2 := (341,342);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(342)!( 2, 17)( 3, 16)( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)
( 9, 10)( 18, 69)( 19, 85)( 20, 84)( 21, 83)( 22, 82)( 23, 81)( 24, 80)
( 25, 79)( 26, 78)( 27, 77)( 28, 76)( 29, 75)( 30, 74)( 31, 73)( 32, 72)
( 33, 71)( 34, 70)( 35, 52)( 36, 68)( 37, 67)( 38, 66)( 39, 65)( 40, 64)
( 41, 63)( 42, 62)( 43, 61)( 44, 60)( 45, 59)( 46, 58)( 47, 57)( 48, 56)
( 49, 55)( 50, 54)( 51, 53)( 87,102)( 88,101)( 89,100)( 90, 99)( 91, 98)
( 92, 97)( 93, 96)( 94, 95)(103,154)(104,170)(105,169)(106,168)(107,167)
(108,166)(109,165)(110,164)(111,163)(112,162)(113,161)(114,160)(115,159)
(116,158)(117,157)(118,156)(119,155)(120,137)(121,153)(122,152)(123,151)
(124,150)(125,149)(126,148)(127,147)(128,146)(129,145)(130,144)(131,143)
(132,142)(133,141)(134,140)(135,139)(136,138)(171,256)(172,272)(173,271)
(174,270)(175,269)(176,268)(177,267)(178,266)(179,265)(180,264)(181,263)
(182,262)(183,261)(184,260)(185,259)(186,258)(187,257)(188,324)(189,340)
(190,339)(191,338)(192,337)(193,336)(194,335)(195,334)(196,333)(197,332)
(198,331)(199,330)(200,329)(201,328)(202,327)(203,326)(204,325)(205,307)
(206,323)(207,322)(208,321)(209,320)(210,319)(211,318)(212,317)(213,316)
(214,315)(215,314)(216,313)(217,312)(218,311)(219,310)(220,309)(221,308)
(222,290)(223,306)(224,305)(225,304)(226,303)(227,302)(228,301)(229,300)
(230,299)(231,298)(232,297)(233,296)(234,295)(235,294)(236,293)(237,292)
(238,291)(239,273)(240,289)(241,288)(242,287)(243,286)(244,285)(245,284)
(246,283)(247,282)(248,281)(249,280)(250,279)(251,278)(252,277)(253,276)
(254,275)(255,274);
s1 := Sym(342)!( 1,189)( 2,188)( 3,204)( 4,203)( 5,202)( 6,201)( 7,200)
( 8,199)( 9,198)( 10,197)( 11,196)( 12,195)( 13,194)( 14,193)( 15,192)
( 16,191)( 17,190)( 18,172)( 19,171)( 20,187)( 21,186)( 22,185)( 23,184)
( 24,183)( 25,182)( 26,181)( 27,180)( 28,179)( 29,178)( 30,177)( 31,176)
( 32,175)( 33,174)( 34,173)( 35,240)( 36,239)( 37,255)( 38,254)( 39,253)
( 40,252)( 41,251)( 42,250)( 43,249)( 44,248)( 45,247)( 46,246)( 47,245)
( 48,244)( 49,243)( 50,242)( 51,241)( 52,223)( 53,222)( 54,238)( 55,237)
( 56,236)( 57,235)( 58,234)( 59,233)( 60,232)( 61,231)( 62,230)( 63,229)
( 64,228)( 65,227)( 66,226)( 67,225)( 68,224)( 69,206)( 70,205)( 71,221)
( 72,220)( 73,219)( 74,218)( 75,217)( 76,216)( 77,215)( 78,214)( 79,213)
( 80,212)( 81,211)( 82,210)( 83,209)( 84,208)( 85,207)( 86,274)( 87,273)
( 88,289)( 89,288)( 90,287)( 91,286)( 92,285)( 93,284)( 94,283)( 95,282)
( 96,281)( 97,280)( 98,279)( 99,278)(100,277)(101,276)(102,275)(103,257)
(104,256)(105,272)(106,271)(107,270)(108,269)(109,268)(110,267)(111,266)
(112,265)(113,264)(114,263)(115,262)(116,261)(117,260)(118,259)(119,258)
(120,325)(121,324)(122,340)(123,339)(124,338)(125,337)(126,336)(127,335)
(128,334)(129,333)(130,332)(131,331)(132,330)(133,329)(134,328)(135,327)
(136,326)(137,308)(138,307)(139,323)(140,322)(141,321)(142,320)(143,319)
(144,318)(145,317)(146,316)(147,315)(148,314)(149,313)(150,312)(151,311)
(152,310)(153,309)(154,291)(155,290)(156,306)(157,305)(158,304)(159,303)
(160,302)(161,301)(162,300)(163,299)(164,298)(165,297)(166,296)(167,295)
(168,294)(169,293)(170,292);
s2 := Sym(342)!(341,342);
poly := sub<Sym(342)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope