Polytope of Type {170,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {170,2,2}*1360
if this polytope has a name.
Group : SmallGroup(1360,244)
Rank : 4
Schlafli Type : {170,2,2}
Number of vertices, edges, etc : 170, 170, 2, 2
Order of s0s1s2s3 : 170
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {85,2,2}*680
   5-fold quotients : {34,2,2}*272
   10-fold quotients : {17,2,2}*136
   17-fold quotients : {10,2,2}*80
   34-fold quotients : {5,2,2}*40
   85-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 17)(  3, 16)(  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)(  9, 10)
( 18, 69)( 19, 85)( 20, 84)( 21, 83)( 22, 82)( 23, 81)( 24, 80)( 25, 79)
( 26, 78)( 27, 77)( 28, 76)( 29, 75)( 30, 74)( 31, 73)( 32, 72)( 33, 71)
( 34, 70)( 35, 52)( 36, 68)( 37, 67)( 38, 66)( 39, 65)( 40, 64)( 41, 63)
( 42, 62)( 43, 61)( 44, 60)( 45, 59)( 46, 58)( 47, 57)( 48, 56)( 49, 55)
( 50, 54)( 51, 53)( 87,102)( 88,101)( 89,100)( 90, 99)( 91, 98)( 92, 97)
( 93, 96)( 94, 95)(103,154)(104,170)(105,169)(106,168)(107,167)(108,166)
(109,165)(110,164)(111,163)(112,162)(113,161)(114,160)(115,159)(116,158)
(117,157)(118,156)(119,155)(120,137)(121,153)(122,152)(123,151)(124,150)
(125,149)(126,148)(127,147)(128,146)(129,145)(130,144)(131,143)(132,142)
(133,141)(134,140)(135,139)(136,138);;
s1 := (  1,104)(  2,103)(  3,119)(  4,118)(  5,117)(  6,116)(  7,115)(  8,114)
(  9,113)( 10,112)( 11,111)( 12,110)( 13,109)( 14,108)( 15,107)( 16,106)
( 17,105)( 18, 87)( 19, 86)( 20,102)( 21,101)( 22,100)( 23, 99)( 24, 98)
( 25, 97)( 26, 96)( 27, 95)( 28, 94)( 29, 93)( 30, 92)( 31, 91)( 32, 90)
( 33, 89)( 34, 88)( 35,155)( 36,154)( 37,170)( 38,169)( 39,168)( 40,167)
( 41,166)( 42,165)( 43,164)( 44,163)( 45,162)( 46,161)( 47,160)( 48,159)
( 49,158)( 50,157)( 51,156)( 52,138)( 53,137)( 54,153)( 55,152)( 56,151)
( 57,150)( 58,149)( 59,148)( 60,147)( 61,146)( 62,145)( 63,144)( 64,143)
( 65,142)( 66,141)( 67,140)( 68,139)( 69,121)( 70,120)( 71,136)( 72,135)
( 73,134)( 74,133)( 75,132)( 76,131)( 77,130)( 78,129)( 79,128)( 80,127)
( 81,126)( 82,125)( 83,124)( 84,123)( 85,122);;
s2 := (171,172);;
s3 := (173,174);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(174)!(  2, 17)(  3, 16)(  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)
(  9, 10)( 18, 69)( 19, 85)( 20, 84)( 21, 83)( 22, 82)( 23, 81)( 24, 80)
( 25, 79)( 26, 78)( 27, 77)( 28, 76)( 29, 75)( 30, 74)( 31, 73)( 32, 72)
( 33, 71)( 34, 70)( 35, 52)( 36, 68)( 37, 67)( 38, 66)( 39, 65)( 40, 64)
( 41, 63)( 42, 62)( 43, 61)( 44, 60)( 45, 59)( 46, 58)( 47, 57)( 48, 56)
( 49, 55)( 50, 54)( 51, 53)( 87,102)( 88,101)( 89,100)( 90, 99)( 91, 98)
( 92, 97)( 93, 96)( 94, 95)(103,154)(104,170)(105,169)(106,168)(107,167)
(108,166)(109,165)(110,164)(111,163)(112,162)(113,161)(114,160)(115,159)
(116,158)(117,157)(118,156)(119,155)(120,137)(121,153)(122,152)(123,151)
(124,150)(125,149)(126,148)(127,147)(128,146)(129,145)(130,144)(131,143)
(132,142)(133,141)(134,140)(135,139)(136,138);
s1 := Sym(174)!(  1,104)(  2,103)(  3,119)(  4,118)(  5,117)(  6,116)(  7,115)
(  8,114)(  9,113)( 10,112)( 11,111)( 12,110)( 13,109)( 14,108)( 15,107)
( 16,106)( 17,105)( 18, 87)( 19, 86)( 20,102)( 21,101)( 22,100)( 23, 99)
( 24, 98)( 25, 97)( 26, 96)( 27, 95)( 28, 94)( 29, 93)( 30, 92)( 31, 91)
( 32, 90)( 33, 89)( 34, 88)( 35,155)( 36,154)( 37,170)( 38,169)( 39,168)
( 40,167)( 41,166)( 42,165)( 43,164)( 44,163)( 45,162)( 46,161)( 47,160)
( 48,159)( 49,158)( 50,157)( 51,156)( 52,138)( 53,137)( 54,153)( 55,152)
( 56,151)( 57,150)( 58,149)( 59,148)( 60,147)( 61,146)( 62,145)( 63,144)
( 64,143)( 65,142)( 66,141)( 67,140)( 68,139)( 69,121)( 70,120)( 71,136)
( 72,135)( 73,134)( 74,133)( 75,132)( 76,131)( 77,130)( 78,129)( 79,128)
( 80,127)( 81,126)( 82,125)( 83,124)( 84,123)( 85,122);
s2 := Sym(174)!(171,172);
s3 := Sym(174)!(173,174);
poly := sub<Sym(174)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope