include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,344}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,344}*1376
if this polytope has a name.
Group : SmallGroup(1376,157)
Rank : 3
Schlafli Type : {2,344}
Number of vertices, edges, etc : 2, 344, 344
Order of s0s1s2 : 344
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,172}*688
4-fold quotients : {2,86}*344
8-fold quotients : {2,43}*172
43-fold quotients : {2,8}*32
86-fold quotients : {2,4}*16
172-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 45)( 5, 44)( 6, 43)( 7, 42)( 8, 41)( 9, 40)( 10, 39)( 11, 38)
( 12, 37)( 13, 36)( 14, 35)( 15, 34)( 16, 33)( 17, 32)( 18, 31)( 19, 30)
( 20, 29)( 21, 28)( 22, 27)( 23, 26)( 24, 25)( 47, 88)( 48, 87)( 49, 86)
( 50, 85)( 51, 84)( 52, 83)( 53, 82)( 54, 81)( 55, 80)( 56, 79)( 57, 78)
( 58, 77)( 59, 76)( 60, 75)( 61, 74)( 62, 73)( 63, 72)( 64, 71)( 65, 70)
( 66, 69)( 67, 68)( 89,132)( 90,174)( 91,173)( 92,172)( 93,171)( 94,170)
( 95,169)( 96,168)( 97,167)( 98,166)( 99,165)(100,164)(101,163)(102,162)
(103,161)(104,160)(105,159)(106,158)(107,157)(108,156)(109,155)(110,154)
(111,153)(112,152)(113,151)(114,150)(115,149)(116,148)(117,147)(118,146)
(119,145)(120,144)(121,143)(122,142)(123,141)(124,140)(125,139)(126,138)
(127,137)(128,136)(129,135)(130,134)(131,133)(175,261)(176,303)(177,302)
(178,301)(179,300)(180,299)(181,298)(182,297)(183,296)(184,295)(185,294)
(186,293)(187,292)(188,291)(189,290)(190,289)(191,288)(192,287)(193,286)
(194,285)(195,284)(196,283)(197,282)(198,281)(199,280)(200,279)(201,278)
(202,277)(203,276)(204,275)(205,274)(206,273)(207,272)(208,271)(209,270)
(210,269)(211,268)(212,267)(213,266)(214,265)(215,264)(216,263)(217,262)
(218,304)(219,346)(220,345)(221,344)(222,343)(223,342)(224,341)(225,340)
(226,339)(227,338)(228,337)(229,336)(230,335)(231,334)(232,333)(233,332)
(234,331)(235,330)(236,329)(237,328)(238,327)(239,326)(240,325)(241,324)
(242,323)(243,322)(244,321)(245,320)(246,319)(247,318)(248,317)(249,316)
(250,315)(251,314)(252,313)(253,312)(254,311)(255,310)(256,309)(257,308)
(258,307)(259,306)(260,305);;
s2 := ( 3,176)( 4,175)( 5,217)( 6,216)( 7,215)( 8,214)( 9,213)( 10,212)
( 11,211)( 12,210)( 13,209)( 14,208)( 15,207)( 16,206)( 17,205)( 18,204)
( 19,203)( 20,202)( 21,201)( 22,200)( 23,199)( 24,198)( 25,197)( 26,196)
( 27,195)( 28,194)( 29,193)( 30,192)( 31,191)( 32,190)( 33,189)( 34,188)
( 35,187)( 36,186)( 37,185)( 38,184)( 39,183)( 40,182)( 41,181)( 42,180)
( 43,179)( 44,178)( 45,177)( 46,219)( 47,218)( 48,260)( 49,259)( 50,258)
( 51,257)( 52,256)( 53,255)( 54,254)( 55,253)( 56,252)( 57,251)( 58,250)
( 59,249)( 60,248)( 61,247)( 62,246)( 63,245)( 64,244)( 65,243)( 66,242)
( 67,241)( 68,240)( 69,239)( 70,238)( 71,237)( 72,236)( 73,235)( 74,234)
( 75,233)( 76,232)( 77,231)( 78,230)( 79,229)( 80,228)( 81,227)( 82,226)
( 83,225)( 84,224)( 85,223)( 86,222)( 87,221)( 88,220)( 89,305)( 90,304)
( 91,346)( 92,345)( 93,344)( 94,343)( 95,342)( 96,341)( 97,340)( 98,339)
( 99,338)(100,337)(101,336)(102,335)(103,334)(104,333)(105,332)(106,331)
(107,330)(108,329)(109,328)(110,327)(111,326)(112,325)(113,324)(114,323)
(115,322)(116,321)(117,320)(118,319)(119,318)(120,317)(121,316)(122,315)
(123,314)(124,313)(125,312)(126,311)(127,310)(128,309)(129,308)(130,307)
(131,306)(132,262)(133,261)(134,303)(135,302)(136,301)(137,300)(138,299)
(139,298)(140,297)(141,296)(142,295)(143,294)(144,293)(145,292)(146,291)
(147,290)(148,289)(149,288)(150,287)(151,286)(152,285)(153,284)(154,283)
(155,282)(156,281)(157,280)(158,279)(159,278)(160,277)(161,276)(162,275)
(163,274)(164,273)(165,272)(166,271)(167,270)(168,269)(169,268)(170,267)
(171,266)(172,265)(173,264)(174,263);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(346)!(1,2);
s1 := Sym(346)!( 4, 45)( 5, 44)( 6, 43)( 7, 42)( 8, 41)( 9, 40)( 10, 39)
( 11, 38)( 12, 37)( 13, 36)( 14, 35)( 15, 34)( 16, 33)( 17, 32)( 18, 31)
( 19, 30)( 20, 29)( 21, 28)( 22, 27)( 23, 26)( 24, 25)( 47, 88)( 48, 87)
( 49, 86)( 50, 85)( 51, 84)( 52, 83)( 53, 82)( 54, 81)( 55, 80)( 56, 79)
( 57, 78)( 58, 77)( 59, 76)( 60, 75)( 61, 74)( 62, 73)( 63, 72)( 64, 71)
( 65, 70)( 66, 69)( 67, 68)( 89,132)( 90,174)( 91,173)( 92,172)( 93,171)
( 94,170)( 95,169)( 96,168)( 97,167)( 98,166)( 99,165)(100,164)(101,163)
(102,162)(103,161)(104,160)(105,159)(106,158)(107,157)(108,156)(109,155)
(110,154)(111,153)(112,152)(113,151)(114,150)(115,149)(116,148)(117,147)
(118,146)(119,145)(120,144)(121,143)(122,142)(123,141)(124,140)(125,139)
(126,138)(127,137)(128,136)(129,135)(130,134)(131,133)(175,261)(176,303)
(177,302)(178,301)(179,300)(180,299)(181,298)(182,297)(183,296)(184,295)
(185,294)(186,293)(187,292)(188,291)(189,290)(190,289)(191,288)(192,287)
(193,286)(194,285)(195,284)(196,283)(197,282)(198,281)(199,280)(200,279)
(201,278)(202,277)(203,276)(204,275)(205,274)(206,273)(207,272)(208,271)
(209,270)(210,269)(211,268)(212,267)(213,266)(214,265)(215,264)(216,263)
(217,262)(218,304)(219,346)(220,345)(221,344)(222,343)(223,342)(224,341)
(225,340)(226,339)(227,338)(228,337)(229,336)(230,335)(231,334)(232,333)
(233,332)(234,331)(235,330)(236,329)(237,328)(238,327)(239,326)(240,325)
(241,324)(242,323)(243,322)(244,321)(245,320)(246,319)(247,318)(248,317)
(249,316)(250,315)(251,314)(252,313)(253,312)(254,311)(255,310)(256,309)
(257,308)(258,307)(259,306)(260,305);
s2 := Sym(346)!( 3,176)( 4,175)( 5,217)( 6,216)( 7,215)( 8,214)( 9,213)
( 10,212)( 11,211)( 12,210)( 13,209)( 14,208)( 15,207)( 16,206)( 17,205)
( 18,204)( 19,203)( 20,202)( 21,201)( 22,200)( 23,199)( 24,198)( 25,197)
( 26,196)( 27,195)( 28,194)( 29,193)( 30,192)( 31,191)( 32,190)( 33,189)
( 34,188)( 35,187)( 36,186)( 37,185)( 38,184)( 39,183)( 40,182)( 41,181)
( 42,180)( 43,179)( 44,178)( 45,177)( 46,219)( 47,218)( 48,260)( 49,259)
( 50,258)( 51,257)( 52,256)( 53,255)( 54,254)( 55,253)( 56,252)( 57,251)
( 58,250)( 59,249)( 60,248)( 61,247)( 62,246)( 63,245)( 64,244)( 65,243)
( 66,242)( 67,241)( 68,240)( 69,239)( 70,238)( 71,237)( 72,236)( 73,235)
( 74,234)( 75,233)( 76,232)( 77,231)( 78,230)( 79,229)( 80,228)( 81,227)
( 82,226)( 83,225)( 84,224)( 85,223)( 86,222)( 87,221)( 88,220)( 89,305)
( 90,304)( 91,346)( 92,345)( 93,344)( 94,343)( 95,342)( 96,341)( 97,340)
( 98,339)( 99,338)(100,337)(101,336)(102,335)(103,334)(104,333)(105,332)
(106,331)(107,330)(108,329)(109,328)(110,327)(111,326)(112,325)(113,324)
(114,323)(115,322)(116,321)(117,320)(118,319)(119,318)(120,317)(121,316)
(122,315)(123,314)(124,313)(125,312)(126,311)(127,310)(128,309)(129,308)
(130,307)(131,306)(132,262)(133,261)(134,303)(135,302)(136,301)(137,300)
(138,299)(139,298)(140,297)(141,296)(142,295)(143,294)(144,293)(145,292)
(146,291)(147,290)(148,289)(149,288)(150,287)(151,286)(152,285)(153,284)
(154,283)(155,282)(156,281)(157,280)(158,279)(159,278)(160,277)(161,276)
(162,275)(163,274)(164,273)(165,272)(166,271)(167,270)(168,269)(169,268)
(170,267)(171,266)(172,265)(173,264)(174,263);
poly := sub<Sym(346)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope