Polytope of Type {8,44,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,44,2}*1408a
if this polytope has a name.
Group : SmallGroup(1408,13687)
Rank : 4
Schlafli Type : {8,44,2}
Number of vertices, edges, etc : 8, 176, 44, 2
Order of s0s1s2s3 : 88
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,44,2}*704, {8,22,2}*704
   4-fold quotients : {2,44,2}*352, {4,22,2}*352
   8-fold quotients : {2,22,2}*176
   11-fold quotients : {8,4,2}*128a
   16-fold quotients : {2,11,2}*88
   22-fold quotients : {4,4,2}*64, {8,2,2}*64
   44-fold quotients : {2,4,2}*32, {4,2,2}*32
   88-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 23, 34)( 24, 35)( 25, 36)( 26, 37)( 27, 38)( 28, 39)( 29, 40)( 30, 41)
( 31, 42)( 32, 43)( 33, 44)( 67, 78)( 68, 79)( 69, 80)( 70, 81)( 71, 82)
( 72, 83)( 73, 84)( 74, 85)( 75, 86)( 76, 87)( 77, 88)( 89,111)( 90,112)
( 91,113)( 92,114)( 93,115)( 94,116)( 95,117)( 96,118)( 97,119)( 98,120)
( 99,121)(100,122)(101,123)(102,124)(103,125)(104,126)(105,127)(106,128)
(107,129)(108,130)(109,131)(110,132)(133,155)(134,156)(135,157)(136,158)
(137,159)(138,160)(139,161)(140,162)(141,163)(142,164)(143,165)(144,166)
(145,167)(146,168)(147,169)(148,170)(149,171)(150,172)(151,173)(152,174)
(153,175)(154,176);;
s1 := (  1, 89)(  2, 99)(  3, 98)(  4, 97)(  5, 96)(  6, 95)(  7, 94)(  8, 93)
(  9, 92)( 10, 91)( 11, 90)( 12,100)( 13,110)( 14,109)( 15,108)( 16,107)
( 17,106)( 18,105)( 19,104)( 20,103)( 21,102)( 22,101)( 23,122)( 24,132)
( 25,131)( 26,130)( 27,129)( 28,128)( 29,127)( 30,126)( 31,125)( 32,124)
( 33,123)( 34,111)( 35,121)( 36,120)( 37,119)( 38,118)( 39,117)( 40,116)
( 41,115)( 42,114)( 43,113)( 44,112)( 45,133)( 46,143)( 47,142)( 48,141)
( 49,140)( 50,139)( 51,138)( 52,137)( 53,136)( 54,135)( 55,134)( 56,144)
( 57,154)( 58,153)( 59,152)( 60,151)( 61,150)( 62,149)( 63,148)( 64,147)
( 65,146)( 66,145)( 67,166)( 68,176)( 69,175)( 70,174)( 71,173)( 72,172)
( 73,171)( 74,170)( 75,169)( 76,168)( 77,167)( 78,155)( 79,165)( 80,164)
( 81,163)( 82,162)( 83,161)( 84,160)( 85,159)( 86,158)( 87,157)( 88,156);;
s2 := (  1,  2)(  3, 11)(  4, 10)(  5,  9)(  6,  8)( 12, 13)( 14, 22)( 15, 21)
( 16, 20)( 17, 19)( 23, 24)( 25, 33)( 26, 32)( 27, 31)( 28, 30)( 34, 35)
( 36, 44)( 37, 43)( 38, 42)( 39, 41)( 45, 46)( 47, 55)( 48, 54)( 49, 53)
( 50, 52)( 56, 57)( 58, 66)( 59, 65)( 60, 64)( 61, 63)( 67, 68)( 69, 77)
( 70, 76)( 71, 75)( 72, 74)( 78, 79)( 80, 88)( 81, 87)( 82, 86)( 83, 85)
( 89,134)( 90,133)( 91,143)( 92,142)( 93,141)( 94,140)( 95,139)( 96,138)
( 97,137)( 98,136)( 99,135)(100,145)(101,144)(102,154)(103,153)(104,152)
(105,151)(106,150)(107,149)(108,148)(109,147)(110,146)(111,156)(112,155)
(113,165)(114,164)(115,163)(116,162)(117,161)(118,160)(119,159)(120,158)
(121,157)(122,167)(123,166)(124,176)(125,175)(126,174)(127,173)(128,172)
(129,171)(130,170)(131,169)(132,168);;
s3 := (177,178);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(178)!( 23, 34)( 24, 35)( 25, 36)( 26, 37)( 27, 38)( 28, 39)( 29, 40)
( 30, 41)( 31, 42)( 32, 43)( 33, 44)( 67, 78)( 68, 79)( 69, 80)( 70, 81)
( 71, 82)( 72, 83)( 73, 84)( 74, 85)( 75, 86)( 76, 87)( 77, 88)( 89,111)
( 90,112)( 91,113)( 92,114)( 93,115)( 94,116)( 95,117)( 96,118)( 97,119)
( 98,120)( 99,121)(100,122)(101,123)(102,124)(103,125)(104,126)(105,127)
(106,128)(107,129)(108,130)(109,131)(110,132)(133,155)(134,156)(135,157)
(136,158)(137,159)(138,160)(139,161)(140,162)(141,163)(142,164)(143,165)
(144,166)(145,167)(146,168)(147,169)(148,170)(149,171)(150,172)(151,173)
(152,174)(153,175)(154,176);
s1 := Sym(178)!(  1, 89)(  2, 99)(  3, 98)(  4, 97)(  5, 96)(  6, 95)(  7, 94)
(  8, 93)(  9, 92)( 10, 91)( 11, 90)( 12,100)( 13,110)( 14,109)( 15,108)
( 16,107)( 17,106)( 18,105)( 19,104)( 20,103)( 21,102)( 22,101)( 23,122)
( 24,132)( 25,131)( 26,130)( 27,129)( 28,128)( 29,127)( 30,126)( 31,125)
( 32,124)( 33,123)( 34,111)( 35,121)( 36,120)( 37,119)( 38,118)( 39,117)
( 40,116)( 41,115)( 42,114)( 43,113)( 44,112)( 45,133)( 46,143)( 47,142)
( 48,141)( 49,140)( 50,139)( 51,138)( 52,137)( 53,136)( 54,135)( 55,134)
( 56,144)( 57,154)( 58,153)( 59,152)( 60,151)( 61,150)( 62,149)( 63,148)
( 64,147)( 65,146)( 66,145)( 67,166)( 68,176)( 69,175)( 70,174)( 71,173)
( 72,172)( 73,171)( 74,170)( 75,169)( 76,168)( 77,167)( 78,155)( 79,165)
( 80,164)( 81,163)( 82,162)( 83,161)( 84,160)( 85,159)( 86,158)( 87,157)
( 88,156);
s2 := Sym(178)!(  1,  2)(  3, 11)(  4, 10)(  5,  9)(  6,  8)( 12, 13)( 14, 22)
( 15, 21)( 16, 20)( 17, 19)( 23, 24)( 25, 33)( 26, 32)( 27, 31)( 28, 30)
( 34, 35)( 36, 44)( 37, 43)( 38, 42)( 39, 41)( 45, 46)( 47, 55)( 48, 54)
( 49, 53)( 50, 52)( 56, 57)( 58, 66)( 59, 65)( 60, 64)( 61, 63)( 67, 68)
( 69, 77)( 70, 76)( 71, 75)( 72, 74)( 78, 79)( 80, 88)( 81, 87)( 82, 86)
( 83, 85)( 89,134)( 90,133)( 91,143)( 92,142)( 93,141)( 94,140)( 95,139)
( 96,138)( 97,137)( 98,136)( 99,135)(100,145)(101,144)(102,154)(103,153)
(104,152)(105,151)(106,150)(107,149)(108,148)(109,147)(110,146)(111,156)
(112,155)(113,165)(114,164)(115,163)(116,162)(117,161)(118,160)(119,159)
(120,158)(121,157)(122,167)(123,166)(124,176)(125,175)(126,174)(127,173)
(128,172)(129,171)(130,170)(131,169)(132,168);
s3 := Sym(178)!(177,178);
poly := sub<Sym(178)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope