Polytope of Type {44,8,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {44,8,2}*1408a
if this polytope has a name.
Group : SmallGroup(1408,13687)
Rank : 4
Schlafli Type : {44,8,2}
Number of vertices, edges, etc : 44, 176, 8, 2
Order of s0s1s2s3 : 88
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {44,4,2}*704, {22,8,2}*704
   4-fold quotients : {44,2,2}*352, {22,4,2}*352
   8-fold quotients : {22,2,2}*176
   11-fold quotients : {4,8,2}*128a
   16-fold quotients : {11,2,2}*88
   22-fold quotients : {4,4,2}*64, {2,8,2}*64
   44-fold quotients : {2,4,2}*32, {4,2,2}*32
   88-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 13, 22)( 14, 21)( 15, 20)
( 16, 19)( 17, 18)( 24, 33)( 25, 32)( 26, 31)( 27, 30)( 28, 29)( 35, 44)
( 36, 43)( 37, 42)( 38, 41)( 39, 40)( 46, 55)( 47, 54)( 48, 53)( 49, 52)
( 50, 51)( 57, 66)( 58, 65)( 59, 64)( 60, 63)( 61, 62)( 68, 77)( 69, 76)
( 70, 75)( 71, 74)( 72, 73)( 79, 88)( 80, 87)( 81, 86)( 82, 85)( 83, 84)
( 89,133)( 90,143)( 91,142)( 92,141)( 93,140)( 94,139)( 95,138)( 96,137)
( 97,136)( 98,135)( 99,134)(100,144)(101,154)(102,153)(103,152)(104,151)
(105,150)(106,149)(107,148)(108,147)(109,146)(110,145)(111,155)(112,165)
(113,164)(114,163)(115,162)(116,161)(117,160)(118,159)(119,158)(120,157)
(121,156)(122,166)(123,176)(124,175)(125,174)(126,173)(127,172)(128,171)
(129,170)(130,169)(131,168)(132,167);;
s1 := (  1, 90)(  2, 89)(  3, 99)(  4, 98)(  5, 97)(  6, 96)(  7, 95)(  8, 94)
(  9, 93)( 10, 92)( 11, 91)( 12,101)( 13,100)( 14,110)( 15,109)( 16,108)
( 17,107)( 18,106)( 19,105)( 20,104)( 21,103)( 22,102)( 23,123)( 24,122)
( 25,132)( 26,131)( 27,130)( 28,129)( 29,128)( 30,127)( 31,126)( 32,125)
( 33,124)( 34,112)( 35,111)( 36,121)( 37,120)( 38,119)( 39,118)( 40,117)
( 41,116)( 42,115)( 43,114)( 44,113)( 45,134)( 46,133)( 47,143)( 48,142)
( 49,141)( 50,140)( 51,139)( 52,138)( 53,137)( 54,136)( 55,135)( 56,145)
( 57,144)( 58,154)( 59,153)( 60,152)( 61,151)( 62,150)( 63,149)( 64,148)
( 65,147)( 66,146)( 67,167)( 68,166)( 69,176)( 70,175)( 71,174)( 72,173)
( 73,172)( 74,171)( 75,170)( 76,169)( 77,168)( 78,156)( 79,155)( 80,165)
( 81,164)( 82,163)( 83,162)( 84,161)( 85,160)( 86,159)( 87,158)( 88,157);;
s2 := ( 23, 34)( 24, 35)( 25, 36)( 26, 37)( 27, 38)( 28, 39)( 29, 40)( 30, 41)
( 31, 42)( 32, 43)( 33, 44)( 67, 78)( 68, 79)( 69, 80)( 70, 81)( 71, 82)
( 72, 83)( 73, 84)( 74, 85)( 75, 86)( 76, 87)( 77, 88)( 89,111)( 90,112)
( 91,113)( 92,114)( 93,115)( 94,116)( 95,117)( 96,118)( 97,119)( 98,120)
( 99,121)(100,122)(101,123)(102,124)(103,125)(104,126)(105,127)(106,128)
(107,129)(108,130)(109,131)(110,132)(133,155)(134,156)(135,157)(136,158)
(137,159)(138,160)(139,161)(140,162)(141,163)(142,164)(143,165)(144,166)
(145,167)(146,168)(147,169)(148,170)(149,171)(150,172)(151,173)(152,174)
(153,175)(154,176);;
s3 := (177,178);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(178)!(  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 13, 22)( 14, 21)
( 15, 20)( 16, 19)( 17, 18)( 24, 33)( 25, 32)( 26, 31)( 27, 30)( 28, 29)
( 35, 44)( 36, 43)( 37, 42)( 38, 41)( 39, 40)( 46, 55)( 47, 54)( 48, 53)
( 49, 52)( 50, 51)( 57, 66)( 58, 65)( 59, 64)( 60, 63)( 61, 62)( 68, 77)
( 69, 76)( 70, 75)( 71, 74)( 72, 73)( 79, 88)( 80, 87)( 81, 86)( 82, 85)
( 83, 84)( 89,133)( 90,143)( 91,142)( 92,141)( 93,140)( 94,139)( 95,138)
( 96,137)( 97,136)( 98,135)( 99,134)(100,144)(101,154)(102,153)(103,152)
(104,151)(105,150)(106,149)(107,148)(108,147)(109,146)(110,145)(111,155)
(112,165)(113,164)(114,163)(115,162)(116,161)(117,160)(118,159)(119,158)
(120,157)(121,156)(122,166)(123,176)(124,175)(125,174)(126,173)(127,172)
(128,171)(129,170)(130,169)(131,168)(132,167);
s1 := Sym(178)!(  1, 90)(  2, 89)(  3, 99)(  4, 98)(  5, 97)(  6, 96)(  7, 95)
(  8, 94)(  9, 93)( 10, 92)( 11, 91)( 12,101)( 13,100)( 14,110)( 15,109)
( 16,108)( 17,107)( 18,106)( 19,105)( 20,104)( 21,103)( 22,102)( 23,123)
( 24,122)( 25,132)( 26,131)( 27,130)( 28,129)( 29,128)( 30,127)( 31,126)
( 32,125)( 33,124)( 34,112)( 35,111)( 36,121)( 37,120)( 38,119)( 39,118)
( 40,117)( 41,116)( 42,115)( 43,114)( 44,113)( 45,134)( 46,133)( 47,143)
( 48,142)( 49,141)( 50,140)( 51,139)( 52,138)( 53,137)( 54,136)( 55,135)
( 56,145)( 57,144)( 58,154)( 59,153)( 60,152)( 61,151)( 62,150)( 63,149)
( 64,148)( 65,147)( 66,146)( 67,167)( 68,166)( 69,176)( 70,175)( 71,174)
( 72,173)( 73,172)( 74,171)( 75,170)( 76,169)( 77,168)( 78,156)( 79,155)
( 80,165)( 81,164)( 82,163)( 83,162)( 84,161)( 85,160)( 86,159)( 87,158)
( 88,157);
s2 := Sym(178)!( 23, 34)( 24, 35)( 25, 36)( 26, 37)( 27, 38)( 28, 39)( 29, 40)
( 30, 41)( 31, 42)( 32, 43)( 33, 44)( 67, 78)( 68, 79)( 69, 80)( 70, 81)
( 71, 82)( 72, 83)( 73, 84)( 74, 85)( 75, 86)( 76, 87)( 77, 88)( 89,111)
( 90,112)( 91,113)( 92,114)( 93,115)( 94,116)( 95,117)( 96,118)( 97,119)
( 98,120)( 99,121)(100,122)(101,123)(102,124)(103,125)(104,126)(105,127)
(106,128)(107,129)(108,130)(109,131)(110,132)(133,155)(134,156)(135,157)
(136,158)(137,159)(138,160)(139,161)(140,162)(141,163)(142,164)(143,165)
(144,166)(145,167)(146,168)(147,169)(148,170)(149,171)(150,172)(151,173)
(152,174)(153,175)(154,176);
s3 := Sym(178)!(177,178);
poly := sub<Sym(178)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope