include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {352,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {352,2}*1408
if this polytope has a name.
Group : SmallGroup(1408,6808)
Rank : 3
Schlafli Type : {352,2}
Number of vertices, edges, etc : 352, 352, 2
Order of s0s1s2 : 352
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {176,2}*704
4-fold quotients : {88,2}*352
8-fold quotients : {44,2}*176
11-fold quotients : {32,2}*128
16-fold quotients : {22,2}*88
22-fold quotients : {16,2}*64
32-fold quotients : {11,2}*44
44-fold quotients : {8,2}*32
88-fold quotients : {4,2}*16
176-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 11)( 3, 10)( 4, 9)( 5, 8)( 6, 7)( 13, 22)( 14, 21)( 15, 20)
( 16, 19)( 17, 18)( 23, 34)( 24, 44)( 25, 43)( 26, 42)( 27, 41)( 28, 40)
( 29, 39)( 30, 38)( 31, 37)( 32, 36)( 33, 35)( 45, 67)( 46, 77)( 47, 76)
( 48, 75)( 49, 74)( 50, 73)( 51, 72)( 52, 71)( 53, 70)( 54, 69)( 55, 68)
( 56, 78)( 57, 88)( 58, 87)( 59, 86)( 60, 85)( 61, 84)( 62, 83)( 63, 82)
( 64, 81)( 65, 80)( 66, 79)( 89,133)( 90,143)( 91,142)( 92,141)( 93,140)
( 94,139)( 95,138)( 96,137)( 97,136)( 98,135)( 99,134)(100,144)(101,154)
(102,153)(103,152)(104,151)(105,150)(106,149)(107,148)(108,147)(109,146)
(110,145)(111,166)(112,176)(113,175)(114,174)(115,173)(116,172)(117,171)
(118,170)(119,169)(120,168)(121,167)(122,155)(123,165)(124,164)(125,163)
(126,162)(127,161)(128,160)(129,159)(130,158)(131,157)(132,156)(177,265)
(178,275)(179,274)(180,273)(181,272)(182,271)(183,270)(184,269)(185,268)
(186,267)(187,266)(188,276)(189,286)(190,285)(191,284)(192,283)(193,282)
(194,281)(195,280)(196,279)(197,278)(198,277)(199,298)(200,308)(201,307)
(202,306)(203,305)(204,304)(205,303)(206,302)(207,301)(208,300)(209,299)
(210,287)(211,297)(212,296)(213,295)(214,294)(215,293)(216,292)(217,291)
(218,290)(219,289)(220,288)(221,331)(222,341)(223,340)(224,339)(225,338)
(226,337)(227,336)(228,335)(229,334)(230,333)(231,332)(232,342)(233,352)
(234,351)(235,350)(236,349)(237,348)(238,347)(239,346)(240,345)(241,344)
(242,343)(243,309)(244,319)(245,318)(246,317)(247,316)(248,315)(249,314)
(250,313)(251,312)(252,311)(253,310)(254,320)(255,330)(256,329)(257,328)
(258,327)(259,326)(260,325)(261,324)(262,323)(263,322)(264,321);;
s1 := ( 1,178)( 2,177)( 3,187)( 4,186)( 5,185)( 6,184)( 7,183)( 8,182)
( 9,181)( 10,180)( 11,179)( 12,189)( 13,188)( 14,198)( 15,197)( 16,196)
( 17,195)( 18,194)( 19,193)( 20,192)( 21,191)( 22,190)( 23,211)( 24,210)
( 25,220)( 26,219)( 27,218)( 28,217)( 29,216)( 30,215)( 31,214)( 32,213)
( 33,212)( 34,200)( 35,199)( 36,209)( 37,208)( 38,207)( 39,206)( 40,205)
( 41,204)( 42,203)( 43,202)( 44,201)( 45,244)( 46,243)( 47,253)( 48,252)
( 49,251)( 50,250)( 51,249)( 52,248)( 53,247)( 54,246)( 55,245)( 56,255)
( 57,254)( 58,264)( 59,263)( 60,262)( 61,261)( 62,260)( 63,259)( 64,258)
( 65,257)( 66,256)( 67,222)( 68,221)( 69,231)( 70,230)( 71,229)( 72,228)
( 73,227)( 74,226)( 75,225)( 76,224)( 77,223)( 78,233)( 79,232)( 80,242)
( 81,241)( 82,240)( 83,239)( 84,238)( 85,237)( 86,236)( 87,235)( 88,234)
( 89,310)( 90,309)( 91,319)( 92,318)( 93,317)( 94,316)( 95,315)( 96,314)
( 97,313)( 98,312)( 99,311)(100,321)(101,320)(102,330)(103,329)(104,328)
(105,327)(106,326)(107,325)(108,324)(109,323)(110,322)(111,343)(112,342)
(113,352)(114,351)(115,350)(116,349)(117,348)(118,347)(119,346)(120,345)
(121,344)(122,332)(123,331)(124,341)(125,340)(126,339)(127,338)(128,337)
(129,336)(130,335)(131,334)(132,333)(133,266)(134,265)(135,275)(136,274)
(137,273)(138,272)(139,271)(140,270)(141,269)(142,268)(143,267)(144,277)
(145,276)(146,286)(147,285)(148,284)(149,283)(150,282)(151,281)(152,280)
(153,279)(154,278)(155,299)(156,298)(157,308)(158,307)(159,306)(160,305)
(161,304)(162,303)(163,302)(164,301)(165,300)(166,288)(167,287)(168,297)
(169,296)(170,295)(171,294)(172,293)(173,292)(174,291)(175,290)(176,289);;
s2 := (353,354);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(354)!( 2, 11)( 3, 10)( 4, 9)( 5, 8)( 6, 7)( 13, 22)( 14, 21)
( 15, 20)( 16, 19)( 17, 18)( 23, 34)( 24, 44)( 25, 43)( 26, 42)( 27, 41)
( 28, 40)( 29, 39)( 30, 38)( 31, 37)( 32, 36)( 33, 35)( 45, 67)( 46, 77)
( 47, 76)( 48, 75)( 49, 74)( 50, 73)( 51, 72)( 52, 71)( 53, 70)( 54, 69)
( 55, 68)( 56, 78)( 57, 88)( 58, 87)( 59, 86)( 60, 85)( 61, 84)( 62, 83)
( 63, 82)( 64, 81)( 65, 80)( 66, 79)( 89,133)( 90,143)( 91,142)( 92,141)
( 93,140)( 94,139)( 95,138)( 96,137)( 97,136)( 98,135)( 99,134)(100,144)
(101,154)(102,153)(103,152)(104,151)(105,150)(106,149)(107,148)(108,147)
(109,146)(110,145)(111,166)(112,176)(113,175)(114,174)(115,173)(116,172)
(117,171)(118,170)(119,169)(120,168)(121,167)(122,155)(123,165)(124,164)
(125,163)(126,162)(127,161)(128,160)(129,159)(130,158)(131,157)(132,156)
(177,265)(178,275)(179,274)(180,273)(181,272)(182,271)(183,270)(184,269)
(185,268)(186,267)(187,266)(188,276)(189,286)(190,285)(191,284)(192,283)
(193,282)(194,281)(195,280)(196,279)(197,278)(198,277)(199,298)(200,308)
(201,307)(202,306)(203,305)(204,304)(205,303)(206,302)(207,301)(208,300)
(209,299)(210,287)(211,297)(212,296)(213,295)(214,294)(215,293)(216,292)
(217,291)(218,290)(219,289)(220,288)(221,331)(222,341)(223,340)(224,339)
(225,338)(226,337)(227,336)(228,335)(229,334)(230,333)(231,332)(232,342)
(233,352)(234,351)(235,350)(236,349)(237,348)(238,347)(239,346)(240,345)
(241,344)(242,343)(243,309)(244,319)(245,318)(246,317)(247,316)(248,315)
(249,314)(250,313)(251,312)(252,311)(253,310)(254,320)(255,330)(256,329)
(257,328)(258,327)(259,326)(260,325)(261,324)(262,323)(263,322)(264,321);
s1 := Sym(354)!( 1,178)( 2,177)( 3,187)( 4,186)( 5,185)( 6,184)( 7,183)
( 8,182)( 9,181)( 10,180)( 11,179)( 12,189)( 13,188)( 14,198)( 15,197)
( 16,196)( 17,195)( 18,194)( 19,193)( 20,192)( 21,191)( 22,190)( 23,211)
( 24,210)( 25,220)( 26,219)( 27,218)( 28,217)( 29,216)( 30,215)( 31,214)
( 32,213)( 33,212)( 34,200)( 35,199)( 36,209)( 37,208)( 38,207)( 39,206)
( 40,205)( 41,204)( 42,203)( 43,202)( 44,201)( 45,244)( 46,243)( 47,253)
( 48,252)( 49,251)( 50,250)( 51,249)( 52,248)( 53,247)( 54,246)( 55,245)
( 56,255)( 57,254)( 58,264)( 59,263)( 60,262)( 61,261)( 62,260)( 63,259)
( 64,258)( 65,257)( 66,256)( 67,222)( 68,221)( 69,231)( 70,230)( 71,229)
( 72,228)( 73,227)( 74,226)( 75,225)( 76,224)( 77,223)( 78,233)( 79,232)
( 80,242)( 81,241)( 82,240)( 83,239)( 84,238)( 85,237)( 86,236)( 87,235)
( 88,234)( 89,310)( 90,309)( 91,319)( 92,318)( 93,317)( 94,316)( 95,315)
( 96,314)( 97,313)( 98,312)( 99,311)(100,321)(101,320)(102,330)(103,329)
(104,328)(105,327)(106,326)(107,325)(108,324)(109,323)(110,322)(111,343)
(112,342)(113,352)(114,351)(115,350)(116,349)(117,348)(118,347)(119,346)
(120,345)(121,344)(122,332)(123,331)(124,341)(125,340)(126,339)(127,338)
(128,337)(129,336)(130,335)(131,334)(132,333)(133,266)(134,265)(135,275)
(136,274)(137,273)(138,272)(139,271)(140,270)(141,269)(142,268)(143,267)
(144,277)(145,276)(146,286)(147,285)(148,284)(149,283)(150,282)(151,281)
(152,280)(153,279)(154,278)(155,299)(156,298)(157,308)(158,307)(159,306)
(160,305)(161,304)(162,303)(163,302)(164,301)(165,300)(166,288)(167,287)
(168,297)(169,296)(170,295)(171,294)(172,293)(173,292)(174,291)(175,290)
(176,289);
s2 := Sym(354)!(353,354);
poly := sub<Sym(354)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope