include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {60,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {60,6,2}*1440b
if this polytope has a name.
Group : SmallGroup(1440,5676)
Rank : 4
Schlafli Type : {60,6,2}
Number of vertices, edges, etc : 60, 180, 6, 2
Order of s0s1s2s3 : 60
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {30,6,2}*720b
3-fold quotients : {20,6,2}*480a, {60,2,2}*480
5-fold quotients : {12,6,2}*288a
6-fold quotients : {10,6,2}*240, {30,2,2}*240
9-fold quotients : {20,2,2}*160
10-fold quotients : {6,6,2}*144a
12-fold quotients : {15,2,2}*120
15-fold quotients : {12,2,2}*96, {4,6,2}*96a
18-fold quotients : {10,2,2}*80
30-fold quotients : {2,6,2}*48, {6,2,2}*48
36-fold quotients : {5,2,2}*40
45-fold quotients : {4,2,2}*32
60-fold quotients : {2,3,2}*24, {3,2,2}*24
90-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6, 11)( 7, 15)( 8, 14)( 9, 13)( 10, 12)( 17, 20)
( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 32, 35)( 33, 34)
( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)( 47, 50)( 48, 49)( 51, 56)
( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 62, 65)( 63, 64)( 66, 71)( 67, 75)
( 68, 74)( 69, 73)( 70, 72)( 77, 80)( 78, 79)( 81, 86)( 82, 90)( 83, 89)
( 84, 88)( 85, 87)( 91,136)( 92,140)( 93,139)( 94,138)( 95,137)( 96,146)
( 97,150)( 98,149)( 99,148)(100,147)(101,141)(102,145)(103,144)(104,143)
(105,142)(106,151)(107,155)(108,154)(109,153)(110,152)(111,161)(112,165)
(113,164)(114,163)(115,162)(116,156)(117,160)(118,159)(119,158)(120,157)
(121,166)(122,170)(123,169)(124,168)(125,167)(126,176)(127,180)(128,179)
(129,178)(130,177)(131,171)(132,175)(133,174)(134,173)(135,172);;
s1 := ( 1, 97)( 2, 96)( 3,100)( 4, 99)( 5, 98)( 6, 92)( 7, 91)( 8, 95)
( 9, 94)( 10, 93)( 11,102)( 12,101)( 13,105)( 14,104)( 15,103)( 16,127)
( 17,126)( 18,130)( 19,129)( 20,128)( 21,122)( 22,121)( 23,125)( 24,124)
( 25,123)( 26,132)( 27,131)( 28,135)( 29,134)( 30,133)( 31,112)( 32,111)
( 33,115)( 34,114)( 35,113)( 36,107)( 37,106)( 38,110)( 39,109)( 40,108)
( 41,117)( 42,116)( 43,120)( 44,119)( 45,118)( 46,142)( 47,141)( 48,145)
( 49,144)( 50,143)( 51,137)( 52,136)( 53,140)( 54,139)( 55,138)( 56,147)
( 57,146)( 58,150)( 59,149)( 60,148)( 61,172)( 62,171)( 63,175)( 64,174)
( 65,173)( 66,167)( 67,166)( 68,170)( 69,169)( 70,168)( 71,177)( 72,176)
( 73,180)( 74,179)( 75,178)( 76,157)( 77,156)( 78,160)( 79,159)( 80,158)
( 81,152)( 82,151)( 83,155)( 84,154)( 85,153)( 86,162)( 87,161)( 88,165)
( 89,164)( 90,163);;
s2 := ( 1, 16)( 2, 17)( 3, 18)( 4, 19)( 5, 20)( 6, 21)( 7, 22)( 8, 23)
( 9, 24)( 10, 25)( 11, 26)( 12, 27)( 13, 28)( 14, 29)( 15, 30)( 46, 61)
( 47, 62)( 48, 63)( 49, 64)( 50, 65)( 51, 66)( 52, 67)( 53, 68)( 54, 69)
( 55, 70)( 56, 71)( 57, 72)( 58, 73)( 59, 74)( 60, 75)( 91,106)( 92,107)
( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)( 99,114)(100,115)
(101,116)(102,117)(103,118)(104,119)(105,120)(136,151)(137,152)(138,153)
(139,154)(140,155)(141,156)(142,157)(143,158)(144,159)(145,160)(146,161)
(147,162)(148,163)(149,164)(150,165);;
s3 := (181,182);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(182)!( 2, 5)( 3, 4)( 6, 11)( 7, 15)( 8, 14)( 9, 13)( 10, 12)
( 17, 20)( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 32, 35)
( 33, 34)( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)( 47, 50)( 48, 49)
( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 62, 65)( 63, 64)( 66, 71)
( 67, 75)( 68, 74)( 69, 73)( 70, 72)( 77, 80)( 78, 79)( 81, 86)( 82, 90)
( 83, 89)( 84, 88)( 85, 87)( 91,136)( 92,140)( 93,139)( 94,138)( 95,137)
( 96,146)( 97,150)( 98,149)( 99,148)(100,147)(101,141)(102,145)(103,144)
(104,143)(105,142)(106,151)(107,155)(108,154)(109,153)(110,152)(111,161)
(112,165)(113,164)(114,163)(115,162)(116,156)(117,160)(118,159)(119,158)
(120,157)(121,166)(122,170)(123,169)(124,168)(125,167)(126,176)(127,180)
(128,179)(129,178)(130,177)(131,171)(132,175)(133,174)(134,173)(135,172);
s1 := Sym(182)!( 1, 97)( 2, 96)( 3,100)( 4, 99)( 5, 98)( 6, 92)( 7, 91)
( 8, 95)( 9, 94)( 10, 93)( 11,102)( 12,101)( 13,105)( 14,104)( 15,103)
( 16,127)( 17,126)( 18,130)( 19,129)( 20,128)( 21,122)( 22,121)( 23,125)
( 24,124)( 25,123)( 26,132)( 27,131)( 28,135)( 29,134)( 30,133)( 31,112)
( 32,111)( 33,115)( 34,114)( 35,113)( 36,107)( 37,106)( 38,110)( 39,109)
( 40,108)( 41,117)( 42,116)( 43,120)( 44,119)( 45,118)( 46,142)( 47,141)
( 48,145)( 49,144)( 50,143)( 51,137)( 52,136)( 53,140)( 54,139)( 55,138)
( 56,147)( 57,146)( 58,150)( 59,149)( 60,148)( 61,172)( 62,171)( 63,175)
( 64,174)( 65,173)( 66,167)( 67,166)( 68,170)( 69,169)( 70,168)( 71,177)
( 72,176)( 73,180)( 74,179)( 75,178)( 76,157)( 77,156)( 78,160)( 79,159)
( 80,158)( 81,152)( 82,151)( 83,155)( 84,154)( 85,153)( 86,162)( 87,161)
( 88,165)( 89,164)( 90,163);
s2 := Sym(182)!( 1, 16)( 2, 17)( 3, 18)( 4, 19)( 5, 20)( 6, 21)( 7, 22)
( 8, 23)( 9, 24)( 10, 25)( 11, 26)( 12, 27)( 13, 28)( 14, 29)( 15, 30)
( 46, 61)( 47, 62)( 48, 63)( 49, 64)( 50, 65)( 51, 66)( 52, 67)( 53, 68)
( 54, 69)( 55, 70)( 56, 71)( 57, 72)( 58, 73)( 59, 74)( 60, 75)( 91,106)
( 92,107)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)( 99,114)
(100,115)(101,116)(102,117)(103,118)(104,119)(105,120)(136,151)(137,152)
(138,153)(139,154)(140,155)(141,156)(142,157)(143,158)(144,159)(145,160)
(146,161)(147,162)(148,163)(149,164)(150,165);
s3 := Sym(182)!(181,182);
poly := sub<Sym(182)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope