include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,2,60}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,2,60}*1440
if this polytope has a name.
Group : SmallGroup(1440,5676)
Rank : 5
Schlafli Type : {3,2,2,60}
Number of vertices, edges, etc : 3, 3, 2, 60, 60
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,2,30}*720
3-fold quotients : {3,2,2,20}*480
4-fold quotients : {3,2,2,15}*360
5-fold quotients : {3,2,2,12}*288
6-fold quotients : {3,2,2,10}*240
10-fold quotients : {3,2,2,6}*144
12-fold quotients : {3,2,2,5}*120
15-fold quotients : {3,2,2,4}*96
20-fold quotients : {3,2,2,3}*72
30-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (4,5);;
s3 := ( 7, 8)( 9,10)(11,12)(14,19)(15,18)(16,21)(17,20)(22,25)(23,24)(26,27)
(28,29)(30,31)(32,41)(33,40)(34,39)(35,38)(36,43)(37,42)(44,47)(45,46)(48,51)
(49,50)(52,53)(54,61)(55,60)(56,59)(57,58)(62,65)(63,64);;
s4 := ( 6,32)( 7,22)( 8,48)( 9,16)(10,34)(11,14)(12,54)(13,38)(15,24)(17,44)
(18,30)(19,50)(20,28)(21,62)(23,36)(25,56)(26,33)(27,55)(29,40)(31,58)(35,46)
(37,45)(39,52)(41,64)(42,49)(43,63)(47,57)(51,60)(53,59)(61,65);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(65)!(2,3);
s1 := Sym(65)!(1,2);
s2 := Sym(65)!(4,5);
s3 := Sym(65)!( 7, 8)( 9,10)(11,12)(14,19)(15,18)(16,21)(17,20)(22,25)(23,24)
(26,27)(28,29)(30,31)(32,41)(33,40)(34,39)(35,38)(36,43)(37,42)(44,47)(45,46)
(48,51)(49,50)(52,53)(54,61)(55,60)(56,59)(57,58)(62,65)(63,64);
s4 := Sym(65)!( 6,32)( 7,22)( 8,48)( 9,16)(10,34)(11,14)(12,54)(13,38)(15,24)
(17,44)(18,30)(19,50)(20,28)(21,62)(23,36)(25,56)(26,33)(27,55)(29,40)(31,58)
(35,46)(37,45)(39,52)(41,64)(42,49)(43,63)(47,57)(51,60)(53,59)(61,65);
poly := sub<Sym(65)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope