Polytope of Type {4,15,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,15,6,2}*1440
if this polytope has a name.
Group : SmallGroup(1440,5900)
Rank : 5
Schlafli Type : {4,15,6,2}
Number of vertices, edges, etc : 4, 30, 45, 6, 2
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {4,15,2,2}*480
   5-fold quotients : {4,3,6,2}*288
   15-fold quotients : {4,3,2,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)
(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)
(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60);;
s1 := ( 2, 3)( 5,17)( 6,19)( 7,18)( 8,20)( 9,13)(10,15)(11,14)(12,16)(21,41)
(22,43)(23,42)(24,44)(25,57)(26,59)(27,58)(28,60)(29,53)(30,55)(31,54)(32,56)
(33,49)(34,51)(35,50)(36,52)(37,45)(38,47)(39,46)(40,48);;
s2 := ( 1,25)( 2,28)( 3,27)( 4,26)( 5,21)( 6,24)( 7,23)( 8,22)( 9,37)(10,40)
(11,39)(12,38)(13,33)(14,36)(15,35)(16,34)(17,29)(18,32)(19,31)(20,30)(41,45)
(42,48)(43,47)(44,46)(49,57)(50,60)(51,59)(52,58)(54,56);;
s3 := (21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)
(31,51)(32,52)(33,53)(34,54)(35,55)(36,56)(37,57)(38,58)(39,59)(40,60);;
s4 := (61,62);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(62)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)
(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)
(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60);
s1 := Sym(62)!( 2, 3)( 5,17)( 6,19)( 7,18)( 8,20)( 9,13)(10,15)(11,14)(12,16)
(21,41)(22,43)(23,42)(24,44)(25,57)(26,59)(27,58)(28,60)(29,53)(30,55)(31,54)
(32,56)(33,49)(34,51)(35,50)(36,52)(37,45)(38,47)(39,46)(40,48);
s2 := Sym(62)!( 1,25)( 2,28)( 3,27)( 4,26)( 5,21)( 6,24)( 7,23)( 8,22)( 9,37)
(10,40)(11,39)(12,38)(13,33)(14,36)(15,35)(16,34)(17,29)(18,32)(19,31)(20,30)
(41,45)(42,48)(43,47)(44,46)(49,57)(50,60)(51,59)(52,58)(54,56);
s3 := Sym(62)!(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)
(30,50)(31,51)(32,52)(33,53)(34,54)(35,55)(36,56)(37,57)(38,58)(39,59)(40,60);
s4 := Sym(62)!(61,62);
poly := sub<Sym(62)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope