include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,15,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,15,2,2}*480
if this polytope has a name.
Group : SmallGroup(480,1199)
Rank : 5
Schlafli Type : {4,15,2,2}
Number of vertices, edges, etc : 4, 30, 15, 2, 2
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,15,2,2,2} of size 960
{4,15,2,2,3} of size 1440
{4,15,2,2,4} of size 1920
Vertex Figure Of :
{2,4,15,2,2} of size 960
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {4,3,2,2}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,15,2,4}*960, {4,15,2,2}*960, {4,30,2,2}*960b, {4,30,2,2}*960c
3-fold covers : {4,45,2,2}*1440, {4,15,2,6}*1440, {4,15,6,2}*1440
4-fold covers : {4,15,2,8}*1920, {4,60,2,2}*1920b, {4,60,2,2}*1920c, {4,15,2,4}*1920, {4,30,2,4}*1920b, {4,30,2,4}*1920c, {4,30,4,2}*1920c, {8,15,2,2}*1920, {4,30,2,2}*1920, {4,15,4,2}*1920a
Permutation Representation (GAP) :
s0 := ( 1, 4)( 2, 6)( 3, 8)( 5,11)( 7,15)( 9,10)(12,16)(13,14)(17,20)(18,19);;
s1 := ( 2, 3)( 4, 9)( 5, 7)( 6,12)( 8,13)(11,17)(14,16)(15,18)(19,20);;
s2 := ( 1, 2)( 3, 5)( 4, 6)( 8,11)( 9,14)(10,13)(12,19)(16,18)(17,20);;
s3 := (21,22);;
s4 := (23,24);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(24)!( 1, 4)( 2, 6)( 3, 8)( 5,11)( 7,15)( 9,10)(12,16)(13,14)(17,20)
(18,19);
s1 := Sym(24)!( 2, 3)( 4, 9)( 5, 7)( 6,12)( 8,13)(11,17)(14,16)(15,18)(19,20);
s2 := Sym(24)!( 1, 2)( 3, 5)( 4, 6)( 8,11)( 9,14)(10,13)(12,19)(16,18)(17,20);
s3 := Sym(24)!(21,22);
s4 := Sym(24)!(23,24);
poly := sub<Sym(24)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope