Polytope of Type {6,2,15,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,15,4}*1440
if this polytope has a name.
Group : SmallGroup(1440,5900)
Rank : 5
Schlafli Type : {6,2,15,4}
Number of vertices, edges, etc : 6, 6, 15, 30, 4
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,15,4}*720
   3-fold quotients : {2,2,15,4}*480
   5-fold quotients : {6,2,3,4}*288
   10-fold quotients : {3,2,3,4}*144
   15-fold quotients : {2,2,3,4}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 8, 9)(11,13)(12,14)(15,16)(17,21)(18,20)(19,22)(23,25)(24,26);;
s3 := ( 7, 8)( 9,11)(10,19)(12,15)(14,24)(16,20)(17,18)(21,23)(22,25);;
s4 := ( 7,10)( 8,12)( 9,14)(11,17)(13,21)(15,16)(18,22)(19,20)(23,26)(24,25);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4*s3*s4, s4*s3*s2*s4*s3*s4*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(26)!(3,4)(5,6);
s1 := Sym(26)!(1,5)(2,3)(4,6);
s2 := Sym(26)!( 8, 9)(11,13)(12,14)(15,16)(17,21)(18,20)(19,22)(23,25)(24,26);
s3 := Sym(26)!( 7, 8)( 9,11)(10,19)(12,15)(14,24)(16,20)(17,18)(21,23)(22,25);
s4 := Sym(26)!( 7,10)( 8,12)( 9,14)(11,17)(13,21)(15,16)(18,22)(19,20)(23,26)
(24,25);
poly := sub<Sym(26)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s3*s2*s4*s3*s4*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope