include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,2,15}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,15}*360
if this polytope has a name.
Group : SmallGroup(360,154)
Rank : 4
Schlafli Type : {6,2,15}
Number of vertices, edges, etc : 6, 6, 15, 15
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,2,15,2} of size 720
{6,2,15,4} of size 1440
Vertex Figure Of :
{2,6,2,15} of size 720
{3,6,2,15} of size 1080
{4,6,2,15} of size 1440
{3,6,2,15} of size 1440
{4,6,2,15} of size 1440
{4,6,2,15} of size 1440
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,15}*180
3-fold quotients : {6,2,5}*120, {2,2,15}*120
5-fold quotients : {6,2,3}*72
6-fold quotients : {3,2,5}*60
9-fold quotients : {2,2,5}*40
10-fold quotients : {3,2,3}*36
15-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,2,15}*720, {6,2,30}*720
3-fold covers : {6,2,45}*1080, {18,2,15}*1080, {6,6,15}*1080a, {6,6,15}*1080b
4-fold covers : {24,2,15}*1440, {12,2,30}*1440, {6,2,60}*1440, {6,4,30}*1440, {6,4,15}*1440
5-fold covers : {6,2,75}*1800, {6,10,15}*1800, {30,2,15}*1800
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21);;
s3 := ( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(21)!(3,4)(5,6);
s1 := Sym(21)!(1,5)(2,3)(4,6);
s2 := Sym(21)!( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21);
s3 := Sym(21)!( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20);
poly := sub<Sym(21)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope