include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,60,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,60,6}*1440d
if this polytope has a name.
Group : SmallGroup(1440,5901)
Rank : 4
Schlafli Type : {2,60,6}
Number of vertices, edges, etc : 2, 60, 180, 6
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,20,6}*480b
5-fold quotients : {2,12,6}*288d
15-fold quotients : {2,4,6}*96b
30-fold quotients : {2,4,3}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 5)( 4, 6)( 7,21)( 8,22)( 9,19)(10,20)(11,17)(12,18)(13,15)(14,16)
(23,45)(24,46)(25,43)(26,44)(27,61)(28,62)(29,59)(30,60)(31,57)(32,58)(33,55)
(34,56)(35,53)(36,54)(37,51)(38,52)(39,49)(40,50)(41,47)(42,48);;
s2 := ( 3,27)( 4,29)( 5,28)( 6,30)( 7,23)( 8,25)( 9,24)(10,26)(11,39)(12,41)
(13,40)(14,42)(15,35)(16,37)(17,36)(18,38)(19,31)(20,33)(21,32)(22,34)(43,47)
(44,49)(45,48)(46,50)(51,59)(52,61)(53,60)(54,62)(56,57);;
s3 := ( 4, 6)( 8,10)(12,14)(16,18)(20,22)(24,26)(28,30)(32,34)(36,38)(40,42)
(44,46)(48,50)(52,54)(56,58)(60,62);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2,
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s3*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(62)!(1,2);
s1 := Sym(62)!( 3, 5)( 4, 6)( 7,21)( 8,22)( 9,19)(10,20)(11,17)(12,18)(13,15)
(14,16)(23,45)(24,46)(25,43)(26,44)(27,61)(28,62)(29,59)(30,60)(31,57)(32,58)
(33,55)(34,56)(35,53)(36,54)(37,51)(38,52)(39,49)(40,50)(41,47)(42,48);
s2 := Sym(62)!( 3,27)( 4,29)( 5,28)( 6,30)( 7,23)( 8,25)( 9,24)(10,26)(11,39)
(12,41)(13,40)(14,42)(15,35)(16,37)(17,36)(18,38)(19,31)(20,33)(21,32)(22,34)
(43,47)(44,49)(45,48)(46,50)(51,59)(52,61)(53,60)(54,62)(56,57);
s3 := Sym(62)!( 4, 6)( 8,10)(12,14)(16,18)(20,22)(24,26)(28,30)(32,34)(36,38)
(40,42)(44,46)(48,50)(52,54)(56,58)(60,62);
poly := sub<Sym(62)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2,
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s3*s2*s1*s2*s1*s2*s1 >;
to this polytope