Polytope of Type {6,15,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,15,2}*1440e
if this polytope has a name.
Group : SmallGroup(1440,5901)
Rank : 4
Schlafli Type : {6,15,2}
Number of vertices, edges, etc : 24, 180, 60, 2
Order of s0s1s2s3 : 60
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,15,2}*480
   4-fold quotients : {6,15,2}*360
   5-fold quotients : {6,3,2}*288
   12-fold quotients : {2,15,2}*120
   15-fold quotients : {6,3,2}*96
   20-fold quotients : {6,3,2}*72
   30-fold quotients : {3,3,2}*48
   36-fold quotients : {2,5,2}*40
   60-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 6, 7)(10,11)(14,15)(18,19)(22,23)(26,27)(30,31)(34,35)(38,39)
(42,43)(46,47)(50,51)(54,55)(58,59);;
s1 := ( 2, 4)( 5,17)( 6,20)( 7,19)( 8,18)( 9,13)(10,16)(11,15)(12,14)(21,41)
(22,44)(23,43)(24,42)(25,57)(26,60)(27,59)(28,58)(29,53)(30,56)(31,55)(32,54)
(33,49)(34,52)(35,51)(36,50)(37,45)(38,48)(39,47)(40,46);;
s2 := ( 1,28)( 2,26)( 3,27)( 4,25)( 5,24)( 6,22)( 7,23)( 8,21)( 9,40)(10,38)
(11,39)(12,37)(13,36)(14,34)(15,35)(16,33)(17,32)(18,30)(19,31)(20,29)(41,48)
(42,46)(43,47)(44,45)(49,60)(50,58)(51,59)(52,57)(53,56);;
s3 := (61,62);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(62)!( 2, 3)( 6, 7)(10,11)(14,15)(18,19)(22,23)(26,27)(30,31)(34,35)
(38,39)(42,43)(46,47)(50,51)(54,55)(58,59);
s1 := Sym(62)!( 2, 4)( 5,17)( 6,20)( 7,19)( 8,18)( 9,13)(10,16)(11,15)(12,14)
(21,41)(22,44)(23,43)(24,42)(25,57)(26,60)(27,59)(28,58)(29,53)(30,56)(31,55)
(32,54)(33,49)(34,52)(35,51)(36,50)(37,45)(38,48)(39,47)(40,46);
s2 := Sym(62)!( 1,28)( 2,26)( 3,27)( 4,25)( 5,24)( 6,22)( 7,23)( 8,21)( 9,40)
(10,38)(11,39)(12,37)(13,36)(14,34)(15,35)(16,33)(17,32)(18,30)(19,31)(20,29)
(41,48)(42,46)(43,47)(44,45)(49,60)(50,58)(51,59)(52,57)(53,56);
s3 := Sym(62)!(61,62);
poly := sub<Sym(62)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope