include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,15,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,15,6}*1440e
if this polytope has a name.
Group : SmallGroup(1440,5901)
Rank : 4
Schlafli Type : {2,15,6}
Number of vertices, edges, etc : 2, 60, 180, 24
Order of s0s1s2s3 : 60
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,15,6}*480
4-fold quotients : {2,15,6}*360
5-fold quotients : {2,3,6}*288
12-fold quotients : {2,15,2}*120
15-fold quotients : {2,3,6}*96
20-fold quotients : {2,3,6}*72
30-fold quotients : {2,3,3}*48
36-fold quotients : {2,5,2}*40
60-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 7,19)( 8,21)( 9,20)(10,22)(11,15)(12,17)(13,16)(14,18)(23,43)
(24,45)(25,44)(26,46)(27,59)(28,61)(29,60)(30,62)(31,55)(32,57)(33,56)(34,58)
(35,51)(36,53)(37,52)(38,54)(39,47)(40,49)(41,48)(42,50);;
s2 := ( 3,27)( 4,30)( 5,29)( 6,28)( 7,23)( 8,26)( 9,25)(10,24)(11,39)(12,42)
(13,41)(14,40)(15,35)(16,38)(17,37)(18,36)(19,31)(20,34)(21,33)(22,32)(43,47)
(44,50)(45,49)(46,48)(51,59)(52,62)(53,61)(54,60)(56,58);;
s3 := ( 3, 6)( 7,10)(11,14)(15,18)(19,22)(23,26)(27,30)(31,34)(35,38)(39,42)
(43,46)(47,50)(51,54)(55,58)(59,62);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(62)!(1,2);
s1 := Sym(62)!( 4, 5)( 7,19)( 8,21)( 9,20)(10,22)(11,15)(12,17)(13,16)(14,18)
(23,43)(24,45)(25,44)(26,46)(27,59)(28,61)(29,60)(30,62)(31,55)(32,57)(33,56)
(34,58)(35,51)(36,53)(37,52)(38,54)(39,47)(40,49)(41,48)(42,50);
s2 := Sym(62)!( 3,27)( 4,30)( 5,29)( 6,28)( 7,23)( 8,26)( 9,25)(10,24)(11,39)
(12,42)(13,41)(14,40)(15,35)(16,38)(17,37)(18,36)(19,31)(20,34)(21,33)(22,32)
(43,47)(44,50)(45,49)(46,48)(51,59)(52,62)(53,61)(54,60)(56,58);
s3 := Sym(62)!( 3, 6)( 7,10)(11,14)(15,18)(19,22)(23,26)(27,30)(31,34)(35,38)
(39,42)(43,46)(47,50)(51,54)(55,58)(59,62);
poly := sub<Sym(62)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope