include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {30,6,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,6,2,2}*1440a
if this polytope has a name.
Group : SmallGroup(1440,5924)
Rank : 5
Schlafli Type : {30,6,2,2}
Number of vertices, edges, etc : 30, 90, 6, 2, 2
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {10,6,2,2}*480
5-fold quotients : {6,6,2,2}*288b
9-fold quotients : {10,2,2,2}*160
10-fold quotients : {6,3,2,2}*144
15-fold quotients : {2,6,2,2}*96
18-fold quotients : {5,2,2,2}*80
30-fold quotients : {2,3,2,2}*48
45-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6,11)( 7,15)( 8,14)( 9,13)(10,12)(17,20)(18,19)(21,26)
(22,30)(23,29)(24,28)(25,27)(32,35)(33,34)(36,41)(37,45)(38,44)(39,43)
(40,42);;
s1 := ( 1, 7)( 2, 6)( 3,10)( 4, 9)( 5, 8)(11,12)(13,15)(16,37)(17,36)(18,40)
(19,39)(20,38)(21,32)(22,31)(23,35)(24,34)(25,33)(26,42)(27,41)(28,45)(29,44)
(30,43);;
s2 := ( 1,16)( 2,17)( 3,18)( 4,19)( 5,20)( 6,26)( 7,27)( 8,28)( 9,29)(10,30)
(11,21)(12,22)(13,23)(14,24)(15,25)(36,41)(37,42)(38,43)(39,44)(40,45);;
s3 := (46,47);;
s4 := (48,49);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(49)!( 2, 5)( 3, 4)( 6,11)( 7,15)( 8,14)( 9,13)(10,12)(17,20)(18,19)
(21,26)(22,30)(23,29)(24,28)(25,27)(32,35)(33,34)(36,41)(37,45)(38,44)(39,43)
(40,42);
s1 := Sym(49)!( 1, 7)( 2, 6)( 3,10)( 4, 9)( 5, 8)(11,12)(13,15)(16,37)(17,36)
(18,40)(19,39)(20,38)(21,32)(22,31)(23,35)(24,34)(25,33)(26,42)(27,41)(28,45)
(29,44)(30,43);
s2 := Sym(49)!( 1,16)( 2,17)( 3,18)( 4,19)( 5,20)( 6,26)( 7,27)( 8,28)( 9,29)
(10,30)(11,21)(12,22)(13,23)(14,24)(15,25)(36,41)(37,42)(38,43)(39,44)(40,45);
s3 := Sym(49)!(46,47);
s4 := Sym(49)!(48,49);
poly := sub<Sym(49)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope