Polytope of Type {2,2,6,30}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,6,30}*1440a
if this polytope has a name.
Group : SmallGroup(1440,5924)
Rank : 5
Schlafli Type : {2,2,6,30}
Number of vertices, edges, etc : 2, 2, 6, 90, 30
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,2,6,10}*480
   5-fold quotients : {2,2,6,6}*288c
   9-fold quotients : {2,2,2,10}*160
   10-fold quotients : {2,2,3,6}*144
   15-fold quotients : {2,2,6,2}*96
   18-fold quotients : {2,2,2,5}*80
   30-fold quotients : {2,2,3,2}*48
   45-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (10,15)(11,16)(12,17)(13,18)(14,19)(20,35)(21,36)(22,37)(23,38)(24,39)
(25,45)(26,46)(27,47)(28,48)(29,49)(30,40)(31,41)(32,42)(33,43)(34,44);;
s3 := ( 5,25)( 6,29)( 7,28)( 8,27)( 9,26)(10,20)(11,24)(12,23)(13,22)(14,21)
(15,30)(16,34)(17,33)(18,32)(19,31)(35,40)(36,44)(37,43)(38,42)(39,41)(46,49)
(47,48);;
s4 := ( 5, 6)( 7, 9)(10,16)(11,15)(12,19)(13,18)(14,17)(20,21)(22,24)(25,31)
(26,30)(27,34)(28,33)(29,32)(35,36)(37,39)(40,46)(41,45)(42,49)(43,48)
(44,47);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s4*s2*s3*s4*s3*s2*s3*s4*s2*s3*s4*s3*s2*s3, 
s4*s2*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s2*s3*s4*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(49)!(1,2);
s1 := Sym(49)!(3,4);
s2 := Sym(49)!(10,15)(11,16)(12,17)(13,18)(14,19)(20,35)(21,36)(22,37)(23,38)
(24,39)(25,45)(26,46)(27,47)(28,48)(29,49)(30,40)(31,41)(32,42)(33,43)(34,44);
s3 := Sym(49)!( 5,25)( 6,29)( 7,28)( 8,27)( 9,26)(10,20)(11,24)(12,23)(13,22)
(14,21)(15,30)(16,34)(17,33)(18,32)(19,31)(35,40)(36,44)(37,43)(38,42)(39,41)
(46,49)(47,48);
s4 := Sym(49)!( 5, 6)( 7, 9)(10,16)(11,15)(12,19)(13,18)(14,17)(20,21)(22,24)
(25,31)(26,30)(27,34)(28,33)(29,32)(35,36)(37,39)(40,46)(41,45)(42,49)(43,48)
(44,47);
poly := sub<Sym(49)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s4*s2*s3*s4*s3*s2*s3*s4*s2*s3*s4*s3*s2*s3, 
s4*s2*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s2*s3*s4*s3 >; 
 

to this polytope