include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,10,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,10,6,2}*1440
if this polytope has a name.
Group : SmallGroup(1440,5924)
Rank : 6
Schlafli Type : {3,2,10,6,2}
Number of vertices, edges, etc : 3, 3, 10, 30, 6, 2
Order of s0s1s2s3s4s5 : 30
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,2,10,2,2}*480
5-fold quotients : {3,2,2,6,2}*288
6-fold quotients : {3,2,5,2,2}*240
10-fold quotients : {3,2,2,3,2}*144
15-fold quotients : {3,2,2,2,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 8, 9)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)
(30,31)(32,33);;
s3 := ( 4, 8)( 5,12)( 6,16)( 7,14)( 9,18)(10,22)(11,20)(13,24)(15,28)(17,26)
(21,32)(23,30)(27,29)(31,33);;
s4 := ( 4,10)( 5, 6)( 7,11)( 8,20)( 9,21)(12,14)(13,15)(16,22)(17,23)(18,30)
(19,31)(24,26)(25,27)(28,32)(29,33);;
s5 := (34,35);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s0*s1*s0*s1*s0*s1, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(35)!(2,3);
s1 := Sym(35)!(1,2);
s2 := Sym(35)!( 8, 9)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)
(28,29)(30,31)(32,33);
s3 := Sym(35)!( 4, 8)( 5,12)( 6,16)( 7,14)( 9,18)(10,22)(11,20)(13,24)(15,28)
(17,26)(21,32)(23,30)(27,29)(31,33);
s4 := Sym(35)!( 4,10)( 5, 6)( 7,11)( 8,20)( 9,21)(12,14)(13,15)(16,22)(17,23)
(18,30)(19,31)(24,26)(25,27)(28,32)(29,33);
s5 := Sym(35)!(34,35);
poly := sub<Sym(35)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s0*s1*s0*s1*s0*s1, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope