Polytope of Type {3,2,10,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,10,6}*720
if this polytope has a name.
Group : SmallGroup(720,813)
Rank : 5
Schlafli Type : {3,2,10,6}
Number of vertices, edges, etc : 3, 3, 10, 30, 6
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,2,10,6,2} of size 1440
Vertex Figure Of :
   {2,3,2,10,6} of size 1440
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,2,10,2}*240
   5-fold quotients : {3,2,2,6}*144
   6-fold quotients : {3,2,5,2}*120
   10-fold quotients : {3,2,2,3}*72
   15-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,2,10,12}*1440, {3,2,20,6}*1440a, {6,2,10,6}*1440
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 8, 9)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)
(30,31)(32,33);;
s3 := ( 4, 8)( 5,12)( 6,16)( 7,14)( 9,18)(10,22)(11,20)(13,24)(15,28)(17,26)
(21,32)(23,30)(27,29)(31,33);;
s4 := ( 4,10)( 5, 6)( 7,11)( 8,20)( 9,21)(12,14)(13,15)(16,22)(17,23)(18,30)
(19,31)(24,26)(25,27)(28,32)(29,33);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(33)!(2,3);
s1 := Sym(33)!(1,2);
s2 := Sym(33)!( 8, 9)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)
(28,29)(30,31)(32,33);
s3 := Sym(33)!( 4, 8)( 5,12)( 6,16)( 7,14)( 9,18)(10,22)(11,20)(13,24)(15,28)
(17,26)(21,32)(23,30)(27,29)(31,33);
s4 := Sym(33)!( 4,10)( 5, 6)( 7,11)( 8,20)( 9,21)(12,14)(13,15)(16,22)(17,23)
(18,30)(19,31)(24,26)(25,27)(28,32)(29,33);
poly := sub<Sym(33)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope