include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {92,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {92,4}*1472
if this polytope has a name.
Group : SmallGroup(1472,737)
Rank : 3
Schlafli Type : {92,4}
Number of vertices, edges, etc : 184, 368, 8
Order of s0s1s2 : 92
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {92,4}*736
4-fold quotients : {92,2}*368, {46,4}*368
8-fold quotients : {46,2}*184
16-fold quotients : {23,2}*92
23-fold quotients : {4,4}*64
46-fold quotients : {4,4}*32
92-fold quotients : {2,4}*16, {4,2}*16
184-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 93)( 2,115)( 3,114)( 4,113)( 5,112)( 6,111)( 7,110)( 8,109)
( 9,108)( 10,107)( 11,106)( 12,105)( 13,104)( 14,103)( 15,102)( 16,101)
( 17,100)( 18, 99)( 19, 98)( 20, 97)( 21, 96)( 22, 95)( 23, 94)( 24,116)
( 25,138)( 26,137)( 27,136)( 28,135)( 29,134)( 30,133)( 31,132)( 32,131)
( 33,130)( 34,129)( 35,128)( 36,127)( 37,126)( 38,125)( 39,124)( 40,123)
( 41,122)( 42,121)( 43,120)( 44,119)( 45,118)( 46,117)( 47,139)( 48,161)
( 49,160)( 50,159)( 51,158)( 52,157)( 53,156)( 54,155)( 55,154)( 56,153)
( 57,152)( 58,151)( 59,150)( 60,149)( 61,148)( 62,147)( 63,146)( 64,145)
( 65,144)( 66,143)( 67,142)( 68,141)( 69,140)( 70,162)( 71,184)( 72,183)
( 73,182)( 74,181)( 75,180)( 76,179)( 77,178)( 78,177)( 79,176)( 80,175)
( 81,174)( 82,173)( 83,172)( 84,171)( 85,170)( 86,169)( 87,168)( 88,167)
( 89,166)( 90,165)( 91,164)( 92,163);;
s1 := ( 1, 2)( 3, 23)( 4, 22)( 5, 21)( 6, 20)( 7, 19)( 8, 18)( 9, 17)
( 10, 16)( 11, 15)( 12, 14)( 24, 25)( 26, 46)( 27, 45)( 28, 44)( 29, 43)
( 30, 42)( 31, 41)( 32, 40)( 33, 39)( 34, 38)( 35, 37)( 47, 48)( 49, 69)
( 50, 68)( 51, 67)( 52, 66)( 53, 65)( 54, 64)( 55, 63)( 56, 62)( 57, 61)
( 58, 60)( 70, 71)( 72, 92)( 73, 91)( 74, 90)( 75, 89)( 76, 88)( 77, 87)
( 78, 86)( 79, 85)( 80, 84)( 81, 83)( 93,140)( 94,139)( 95,161)( 96,160)
( 97,159)( 98,158)( 99,157)(100,156)(101,155)(102,154)(103,153)(104,152)
(105,151)(106,150)(107,149)(108,148)(109,147)(110,146)(111,145)(112,144)
(113,143)(114,142)(115,141)(116,163)(117,162)(118,184)(119,183)(120,182)
(121,181)(122,180)(123,179)(124,178)(125,177)(126,176)(127,175)(128,174)
(129,173)(130,172)(131,171)(132,170)(133,169)(134,168)(135,167)(136,166)
(137,165)(138,164);;
s2 := ( 47, 70)( 48, 71)( 49, 72)( 50, 73)( 51, 74)( 52, 75)( 53, 76)( 54, 77)
( 55, 78)( 56, 79)( 57, 80)( 58, 81)( 59, 82)( 60, 83)( 61, 84)( 62, 85)
( 63, 86)( 64, 87)( 65, 88)( 66, 89)( 67, 90)( 68, 91)( 69, 92)(139,162)
(140,163)(141,164)(142,165)(143,166)(144,167)(145,168)(146,169)(147,170)
(148,171)(149,172)(150,173)(151,174)(152,175)(153,176)(154,177)(155,178)
(156,179)(157,180)(158,181)(159,182)(160,183)(161,184);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(184)!( 1, 93)( 2,115)( 3,114)( 4,113)( 5,112)( 6,111)( 7,110)
( 8,109)( 9,108)( 10,107)( 11,106)( 12,105)( 13,104)( 14,103)( 15,102)
( 16,101)( 17,100)( 18, 99)( 19, 98)( 20, 97)( 21, 96)( 22, 95)( 23, 94)
( 24,116)( 25,138)( 26,137)( 27,136)( 28,135)( 29,134)( 30,133)( 31,132)
( 32,131)( 33,130)( 34,129)( 35,128)( 36,127)( 37,126)( 38,125)( 39,124)
( 40,123)( 41,122)( 42,121)( 43,120)( 44,119)( 45,118)( 46,117)( 47,139)
( 48,161)( 49,160)( 50,159)( 51,158)( 52,157)( 53,156)( 54,155)( 55,154)
( 56,153)( 57,152)( 58,151)( 59,150)( 60,149)( 61,148)( 62,147)( 63,146)
( 64,145)( 65,144)( 66,143)( 67,142)( 68,141)( 69,140)( 70,162)( 71,184)
( 72,183)( 73,182)( 74,181)( 75,180)( 76,179)( 77,178)( 78,177)( 79,176)
( 80,175)( 81,174)( 82,173)( 83,172)( 84,171)( 85,170)( 86,169)( 87,168)
( 88,167)( 89,166)( 90,165)( 91,164)( 92,163);
s1 := Sym(184)!( 1, 2)( 3, 23)( 4, 22)( 5, 21)( 6, 20)( 7, 19)( 8, 18)
( 9, 17)( 10, 16)( 11, 15)( 12, 14)( 24, 25)( 26, 46)( 27, 45)( 28, 44)
( 29, 43)( 30, 42)( 31, 41)( 32, 40)( 33, 39)( 34, 38)( 35, 37)( 47, 48)
( 49, 69)( 50, 68)( 51, 67)( 52, 66)( 53, 65)( 54, 64)( 55, 63)( 56, 62)
( 57, 61)( 58, 60)( 70, 71)( 72, 92)( 73, 91)( 74, 90)( 75, 89)( 76, 88)
( 77, 87)( 78, 86)( 79, 85)( 80, 84)( 81, 83)( 93,140)( 94,139)( 95,161)
( 96,160)( 97,159)( 98,158)( 99,157)(100,156)(101,155)(102,154)(103,153)
(104,152)(105,151)(106,150)(107,149)(108,148)(109,147)(110,146)(111,145)
(112,144)(113,143)(114,142)(115,141)(116,163)(117,162)(118,184)(119,183)
(120,182)(121,181)(122,180)(123,179)(124,178)(125,177)(126,176)(127,175)
(128,174)(129,173)(130,172)(131,171)(132,170)(133,169)(134,168)(135,167)
(136,166)(137,165)(138,164);
s2 := Sym(184)!( 47, 70)( 48, 71)( 49, 72)( 50, 73)( 51, 74)( 52, 75)( 53, 76)
( 54, 77)( 55, 78)( 56, 79)( 57, 80)( 58, 81)( 59, 82)( 60, 83)( 61, 84)
( 62, 85)( 63, 86)( 64, 87)( 65, 88)( 66, 89)( 67, 90)( 68, 91)( 69, 92)
(139,162)(140,163)(141,164)(142,165)(143,166)(144,167)(145,168)(146,169)
(147,170)(148,171)(149,172)(150,173)(151,174)(152,175)(153,176)(154,177)
(155,178)(156,179)(157,180)(158,181)(159,182)(160,183)(161,184);
poly := sub<Sym(184)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope