include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {368,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {368,2}*1472
if this polytope has a name.
Group : SmallGroup(1472,970)
Rank : 3
Schlafli Type : {368,2}
Number of vertices, edges, etc : 368, 368, 2
Order of s0s1s2 : 368
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {184,2}*736
4-fold quotients : {92,2}*368
8-fold quotients : {46,2}*184
16-fold quotients : {23,2}*92
23-fold quotients : {16,2}*64
46-fold quotients : {8,2}*32
92-fold quotients : {4,2}*16
184-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 23)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 18)( 8, 17)( 9, 16)
( 10, 15)( 11, 14)( 12, 13)( 25, 46)( 26, 45)( 27, 44)( 28, 43)( 29, 42)
( 30, 41)( 31, 40)( 32, 39)( 33, 38)( 34, 37)( 35, 36)( 47, 70)( 48, 92)
( 49, 91)( 50, 90)( 51, 89)( 52, 88)( 53, 87)( 54, 86)( 55, 85)( 56, 84)
( 57, 83)( 58, 82)( 59, 81)( 60, 80)( 61, 79)( 62, 78)( 63, 77)( 64, 76)
( 65, 75)( 66, 74)( 67, 73)( 68, 72)( 69, 71)( 93,139)( 94,161)( 95,160)
( 96,159)( 97,158)( 98,157)( 99,156)(100,155)(101,154)(102,153)(103,152)
(104,151)(105,150)(106,149)(107,148)(108,147)(109,146)(110,145)(111,144)
(112,143)(113,142)(114,141)(115,140)(116,162)(117,184)(118,183)(119,182)
(120,181)(121,180)(122,179)(123,178)(124,177)(125,176)(126,175)(127,174)
(128,173)(129,172)(130,171)(131,170)(132,169)(133,168)(134,167)(135,166)
(136,165)(137,164)(138,163)(185,277)(186,299)(187,298)(188,297)(189,296)
(190,295)(191,294)(192,293)(193,292)(194,291)(195,290)(196,289)(197,288)
(198,287)(199,286)(200,285)(201,284)(202,283)(203,282)(204,281)(205,280)
(206,279)(207,278)(208,300)(209,322)(210,321)(211,320)(212,319)(213,318)
(214,317)(215,316)(216,315)(217,314)(218,313)(219,312)(220,311)(221,310)
(222,309)(223,308)(224,307)(225,306)(226,305)(227,304)(228,303)(229,302)
(230,301)(231,346)(232,368)(233,367)(234,366)(235,365)(236,364)(237,363)
(238,362)(239,361)(240,360)(241,359)(242,358)(243,357)(244,356)(245,355)
(246,354)(247,353)(248,352)(249,351)(250,350)(251,349)(252,348)(253,347)
(254,323)(255,345)(256,344)(257,343)(258,342)(259,341)(260,340)(261,339)
(262,338)(263,337)(264,336)(265,335)(266,334)(267,333)(268,332)(269,331)
(270,330)(271,329)(272,328)(273,327)(274,326)(275,325)(276,324);;
s1 := ( 1,186)( 2,185)( 3,207)( 4,206)( 5,205)( 6,204)( 7,203)( 8,202)
( 9,201)( 10,200)( 11,199)( 12,198)( 13,197)( 14,196)( 15,195)( 16,194)
( 17,193)( 18,192)( 19,191)( 20,190)( 21,189)( 22,188)( 23,187)( 24,209)
( 25,208)( 26,230)( 27,229)( 28,228)( 29,227)( 30,226)( 31,225)( 32,224)
( 33,223)( 34,222)( 35,221)( 36,220)( 37,219)( 38,218)( 39,217)( 40,216)
( 41,215)( 42,214)( 43,213)( 44,212)( 45,211)( 46,210)( 47,255)( 48,254)
( 49,276)( 50,275)( 51,274)( 52,273)( 53,272)( 54,271)( 55,270)( 56,269)
( 57,268)( 58,267)( 59,266)( 60,265)( 61,264)( 62,263)( 63,262)( 64,261)
( 65,260)( 66,259)( 67,258)( 68,257)( 69,256)( 70,232)( 71,231)( 72,253)
( 73,252)( 74,251)( 75,250)( 76,249)( 77,248)( 78,247)( 79,246)( 80,245)
( 81,244)( 82,243)( 83,242)( 84,241)( 85,240)( 86,239)( 87,238)( 88,237)
( 89,236)( 90,235)( 91,234)( 92,233)( 93,324)( 94,323)( 95,345)( 96,344)
( 97,343)( 98,342)( 99,341)(100,340)(101,339)(102,338)(103,337)(104,336)
(105,335)(106,334)(107,333)(108,332)(109,331)(110,330)(111,329)(112,328)
(113,327)(114,326)(115,325)(116,347)(117,346)(118,368)(119,367)(120,366)
(121,365)(122,364)(123,363)(124,362)(125,361)(126,360)(127,359)(128,358)
(129,357)(130,356)(131,355)(132,354)(133,353)(134,352)(135,351)(136,350)
(137,349)(138,348)(139,278)(140,277)(141,299)(142,298)(143,297)(144,296)
(145,295)(146,294)(147,293)(148,292)(149,291)(150,290)(151,289)(152,288)
(153,287)(154,286)(155,285)(156,284)(157,283)(158,282)(159,281)(160,280)
(161,279)(162,301)(163,300)(164,322)(165,321)(166,320)(167,319)(168,318)
(169,317)(170,316)(171,315)(172,314)(173,313)(174,312)(175,311)(176,310)
(177,309)(178,308)(179,307)(180,306)(181,305)(182,304)(183,303)(184,302);;
s2 := (369,370);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(370)!( 2, 23)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 18)( 8, 17)
( 9, 16)( 10, 15)( 11, 14)( 12, 13)( 25, 46)( 26, 45)( 27, 44)( 28, 43)
( 29, 42)( 30, 41)( 31, 40)( 32, 39)( 33, 38)( 34, 37)( 35, 36)( 47, 70)
( 48, 92)( 49, 91)( 50, 90)( 51, 89)( 52, 88)( 53, 87)( 54, 86)( 55, 85)
( 56, 84)( 57, 83)( 58, 82)( 59, 81)( 60, 80)( 61, 79)( 62, 78)( 63, 77)
( 64, 76)( 65, 75)( 66, 74)( 67, 73)( 68, 72)( 69, 71)( 93,139)( 94,161)
( 95,160)( 96,159)( 97,158)( 98,157)( 99,156)(100,155)(101,154)(102,153)
(103,152)(104,151)(105,150)(106,149)(107,148)(108,147)(109,146)(110,145)
(111,144)(112,143)(113,142)(114,141)(115,140)(116,162)(117,184)(118,183)
(119,182)(120,181)(121,180)(122,179)(123,178)(124,177)(125,176)(126,175)
(127,174)(128,173)(129,172)(130,171)(131,170)(132,169)(133,168)(134,167)
(135,166)(136,165)(137,164)(138,163)(185,277)(186,299)(187,298)(188,297)
(189,296)(190,295)(191,294)(192,293)(193,292)(194,291)(195,290)(196,289)
(197,288)(198,287)(199,286)(200,285)(201,284)(202,283)(203,282)(204,281)
(205,280)(206,279)(207,278)(208,300)(209,322)(210,321)(211,320)(212,319)
(213,318)(214,317)(215,316)(216,315)(217,314)(218,313)(219,312)(220,311)
(221,310)(222,309)(223,308)(224,307)(225,306)(226,305)(227,304)(228,303)
(229,302)(230,301)(231,346)(232,368)(233,367)(234,366)(235,365)(236,364)
(237,363)(238,362)(239,361)(240,360)(241,359)(242,358)(243,357)(244,356)
(245,355)(246,354)(247,353)(248,352)(249,351)(250,350)(251,349)(252,348)
(253,347)(254,323)(255,345)(256,344)(257,343)(258,342)(259,341)(260,340)
(261,339)(262,338)(263,337)(264,336)(265,335)(266,334)(267,333)(268,332)
(269,331)(270,330)(271,329)(272,328)(273,327)(274,326)(275,325)(276,324);
s1 := Sym(370)!( 1,186)( 2,185)( 3,207)( 4,206)( 5,205)( 6,204)( 7,203)
( 8,202)( 9,201)( 10,200)( 11,199)( 12,198)( 13,197)( 14,196)( 15,195)
( 16,194)( 17,193)( 18,192)( 19,191)( 20,190)( 21,189)( 22,188)( 23,187)
( 24,209)( 25,208)( 26,230)( 27,229)( 28,228)( 29,227)( 30,226)( 31,225)
( 32,224)( 33,223)( 34,222)( 35,221)( 36,220)( 37,219)( 38,218)( 39,217)
( 40,216)( 41,215)( 42,214)( 43,213)( 44,212)( 45,211)( 46,210)( 47,255)
( 48,254)( 49,276)( 50,275)( 51,274)( 52,273)( 53,272)( 54,271)( 55,270)
( 56,269)( 57,268)( 58,267)( 59,266)( 60,265)( 61,264)( 62,263)( 63,262)
( 64,261)( 65,260)( 66,259)( 67,258)( 68,257)( 69,256)( 70,232)( 71,231)
( 72,253)( 73,252)( 74,251)( 75,250)( 76,249)( 77,248)( 78,247)( 79,246)
( 80,245)( 81,244)( 82,243)( 83,242)( 84,241)( 85,240)( 86,239)( 87,238)
( 88,237)( 89,236)( 90,235)( 91,234)( 92,233)( 93,324)( 94,323)( 95,345)
( 96,344)( 97,343)( 98,342)( 99,341)(100,340)(101,339)(102,338)(103,337)
(104,336)(105,335)(106,334)(107,333)(108,332)(109,331)(110,330)(111,329)
(112,328)(113,327)(114,326)(115,325)(116,347)(117,346)(118,368)(119,367)
(120,366)(121,365)(122,364)(123,363)(124,362)(125,361)(126,360)(127,359)
(128,358)(129,357)(130,356)(131,355)(132,354)(133,353)(134,352)(135,351)
(136,350)(137,349)(138,348)(139,278)(140,277)(141,299)(142,298)(143,297)
(144,296)(145,295)(146,294)(147,293)(148,292)(149,291)(150,290)(151,289)
(152,288)(153,287)(154,286)(155,285)(156,284)(157,283)(158,282)(159,281)
(160,280)(161,279)(162,301)(163,300)(164,322)(165,321)(166,320)(167,319)
(168,318)(169,317)(170,316)(171,315)(172,314)(173,313)(174,312)(175,311)
(176,310)(177,309)(178,308)(179,307)(180,306)(181,305)(182,304)(183,303)
(184,302);
s2 := Sym(370)!(369,370);
poly := sub<Sym(370)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope