Polytope of Type {10,15}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,15}*1500f
if this polytope has a name.
Group : SmallGroup(1500,125)
Rank : 3
Schlafli Type : {10,15}
Number of vertices, edges, etc : 50, 375, 75
Order of s0s1s2 : 6
Order of s0s1s2s1 : 10
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   5-fold quotients : {10,3}*300
   125-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  6, 21)(  7, 25)(  8, 24)(  9, 23)( 10, 22)( 11, 16)
( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 26,101)( 27,105)( 28,104)( 29,103)
( 30,102)( 31,121)( 32,125)( 33,124)( 34,123)( 35,122)( 36,116)( 37,120)
( 38,119)( 39,118)( 40,117)( 41,111)( 42,115)( 43,114)( 44,113)( 45,112)
( 46,106)( 47,110)( 48,109)( 49,108)( 50,107)( 51, 76)( 52, 80)( 53, 79)
( 54, 78)( 55, 77)( 56, 96)( 57,100)( 58, 99)( 59, 98)( 60, 97)( 61, 91)
( 62, 95)( 63, 94)( 64, 93)( 65, 92)( 66, 86)( 67, 90)( 68, 89)( 69, 88)
( 70, 87)( 71, 81)( 72, 85)( 73, 84)( 74, 83)( 75, 82);;
s1 := (  1, 27)(  2, 26)(  3, 30)(  4, 29)(  5, 28)(  6, 33)(  7, 32)(  8, 31)
(  9, 35)( 10, 34)( 11, 39)( 12, 38)( 13, 37)( 14, 36)( 15, 40)( 16, 45)
( 17, 44)( 18, 43)( 19, 42)( 20, 41)( 21, 46)( 22, 50)( 23, 49)( 24, 48)
( 25, 47)( 51,102)( 52,101)( 53,105)( 54,104)( 55,103)( 56,108)( 57,107)
( 58,106)( 59,110)( 60,109)( 61,114)( 62,113)( 63,112)( 64,111)( 65,115)
( 66,120)( 67,119)( 68,118)( 69,117)( 70,116)( 71,121)( 72,125)( 73,124)
( 74,123)( 75,122)( 76, 77)( 78, 80)( 81, 83)( 84, 85)( 86, 89)( 87, 88)
( 91, 95)( 92, 94)( 97,100)( 98, 99);;
s2 := (  2,  7)(  3, 13)(  4, 19)(  5, 25)(  6, 21)(  9, 14)( 10, 20)( 11, 16)
( 12, 22)( 18, 23)( 26,101)( 27,107)( 28,113)( 29,119)( 30,125)( 31,121)
( 32,102)( 33,108)( 34,114)( 35,120)( 36,116)( 37,122)( 38,103)( 39,109)
( 40,115)( 41,111)( 42,117)( 43,123)( 44,104)( 45,110)( 46,106)( 47,112)
( 48,118)( 49,124)( 50,105)( 51, 76)( 52, 82)( 53, 88)( 54, 94)( 55,100)
( 56, 96)( 57, 77)( 58, 83)( 59, 89)( 60, 95)( 61, 91)( 62, 97)( 63, 78)
( 64, 84)( 65, 90)( 66, 86)( 67, 92)( 68, 98)( 69, 79)( 70, 85)( 71, 81)
( 72, 87)( 73, 93)( 74, 99)( 75, 80);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(125)!(  2,  5)(  3,  4)(  6, 21)(  7, 25)(  8, 24)(  9, 23)( 10, 22)
( 11, 16)( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 26,101)( 27,105)( 28,104)
( 29,103)( 30,102)( 31,121)( 32,125)( 33,124)( 34,123)( 35,122)( 36,116)
( 37,120)( 38,119)( 39,118)( 40,117)( 41,111)( 42,115)( 43,114)( 44,113)
( 45,112)( 46,106)( 47,110)( 48,109)( 49,108)( 50,107)( 51, 76)( 52, 80)
( 53, 79)( 54, 78)( 55, 77)( 56, 96)( 57,100)( 58, 99)( 59, 98)( 60, 97)
( 61, 91)( 62, 95)( 63, 94)( 64, 93)( 65, 92)( 66, 86)( 67, 90)( 68, 89)
( 69, 88)( 70, 87)( 71, 81)( 72, 85)( 73, 84)( 74, 83)( 75, 82);
s1 := Sym(125)!(  1, 27)(  2, 26)(  3, 30)(  4, 29)(  5, 28)(  6, 33)(  7, 32)
(  8, 31)(  9, 35)( 10, 34)( 11, 39)( 12, 38)( 13, 37)( 14, 36)( 15, 40)
( 16, 45)( 17, 44)( 18, 43)( 19, 42)( 20, 41)( 21, 46)( 22, 50)( 23, 49)
( 24, 48)( 25, 47)( 51,102)( 52,101)( 53,105)( 54,104)( 55,103)( 56,108)
( 57,107)( 58,106)( 59,110)( 60,109)( 61,114)( 62,113)( 63,112)( 64,111)
( 65,115)( 66,120)( 67,119)( 68,118)( 69,117)( 70,116)( 71,121)( 72,125)
( 73,124)( 74,123)( 75,122)( 76, 77)( 78, 80)( 81, 83)( 84, 85)( 86, 89)
( 87, 88)( 91, 95)( 92, 94)( 97,100)( 98, 99);
s2 := Sym(125)!(  2,  7)(  3, 13)(  4, 19)(  5, 25)(  6, 21)(  9, 14)( 10, 20)
( 11, 16)( 12, 22)( 18, 23)( 26,101)( 27,107)( 28,113)( 29,119)( 30,125)
( 31,121)( 32,102)( 33,108)( 34,114)( 35,120)( 36,116)( 37,122)( 38,103)
( 39,109)( 40,115)( 41,111)( 42,117)( 43,123)( 44,104)( 45,110)( 46,106)
( 47,112)( 48,118)( 49,124)( 50,105)( 51, 76)( 52, 82)( 53, 88)( 54, 94)
( 55,100)( 56, 96)( 57, 77)( 58, 83)( 59, 89)( 60, 95)( 61, 91)( 62, 97)
( 63, 78)( 64, 84)( 65, 90)( 66, 86)( 67, 92)( 68, 98)( 69, 79)( 70, 85)
( 71, 81)( 72, 87)( 73, 93)( 74, 99)( 75, 80);
poly := sub<Sym(125)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope