Polytope of Type {15}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {15}*30
Also Known As : 15-gon, {15}. if this polytope has another name.
Group : SmallGroup(30,3)
Rank : 2
Schlafli Type : {15}
Number of vertices, edges, etc : 15, 15
Order of s0s1 : 15
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {15,2} of size 60
   {15,4} of size 120
   {15,6} of size 180
   {15,6} of size 240
   {15,4} of size 240
   {15,10} of size 300
   {15,3} of size 360
   {15,6} of size 360
   {15,10} of size 360
   {15,12} of size 480
   {15,8} of size 480
   {15,4} of size 480
   {15,6} of size 540
   {15,5} of size 600
   {15,10} of size 600
   {15,4} of size 720
   {15,6} of size 720
   {15,6} of size 720
   {15,6} of size 720
   {15,6} of size 720
   {15,10} of size 720
   {15,12} of size 720
   {15,6} of size 720
   {15,30} of size 900
   {15,6} of size 960
   {15,8} of size 960
   {15,8} of size 960
   {15,8} of size 960
   {15,10} of size 960
   {15,4} of size 960
   {15,10} of size 1200
   {15,10} of size 1200
   {15,20} of size 1200
   {15,30} of size 1200
   {15,6} of size 1440
   {15,6} of size 1440
   {15,8} of size 1440
   {15,12} of size 1440
   {15,12} of size 1440
   {15,20} of size 1440
   {15,24} of size 1440
   {15,12} of size 1440
   {15,3} of size 1440
   {15,12} of size 1440
   {15,15} of size 1440
   {15,20} of size 1440
   {15,6} of size 1500
   {15,10} of size 1500
   {15,10} of size 1500
   {15,10} of size 1500
   {15,10} of size 1500
   {15,10} of size 1500
   {15,6} of size 1500
   {15,10} of size 1500
   {15,10} of size 1500
   {15,6} of size 1620
   {15,18} of size 1620
   {15,8} of size 1680
   {15,6} of size 1800
   {15,10} of size 1800
   {15,10} of size 1800
   {15,15} of size 1800
   {15,15} of size 1800
   {15,12} of size 1920
   {15,8} of size 1920
   {15,20} of size 1920
   {15,20} of size 1920
   {15,10} of size 1920
   {15,8} of size 1920
   {15,4} of size 1920
   {15,8} of size 1920
   {15,4} of size 1920
   {15,15} of size 1920
Vertex Figure Of :
   {2,15} of size 60
   {4,15} of size 120
   {6,15} of size 180
   {6,15} of size 240
   {4,15} of size 240
   {10,15} of size 300
   {3,15} of size 360
   {6,15} of size 360
   {10,15} of size 360
   {12,15} of size 480
   {8,15} of size 480
   {4,15} of size 480
   {6,15} of size 540
   {5,15} of size 600
   {10,15} of size 600
   {4,15} of size 720
   {6,15} of size 720
   {6,15} of size 720
   {6,15} of size 720
   {6,15} of size 720
   {10,15} of size 720
   {12,15} of size 720
   {6,15} of size 720
   {30,15} of size 900
   {6,15} of size 960
   {8,15} of size 960
   {8,15} of size 960
   {8,15} of size 960
   {10,15} of size 960
   {4,15} of size 960
   {10,15} of size 1200
   {10,15} of size 1200
   {20,15} of size 1200
   {30,15} of size 1200
   {6,15} of size 1440
   {6,15} of size 1440
   {8,15} of size 1440
   {12,15} of size 1440
   {12,15} of size 1440
   {20,15} of size 1440
   {24,15} of size 1440
   {12,15} of size 1440
   {3,15} of size 1440
   {12,15} of size 1440
   {15,15} of size 1440
   {20,15} of size 1440
   {6,15} of size 1500
   {10,15} of size 1500
   {10,15} of size 1500
   {10,15} of size 1500
   {10,15} of size 1500
   {10,15} of size 1500
   {6,15} of size 1500
   {10,15} of size 1500
   {10,15} of size 1500
   {6,15} of size 1620
   {18,15} of size 1620
   {8,15} of size 1680
   {6,15} of size 1800
   {10,15} of size 1800
   {10,15} of size 1800
   {15,15} of size 1800
   {15,15} of size 1800
   {12,15} of size 1920
   {8,15} of size 1920
   {20,15} of size 1920
   {20,15} of size 1920
   {10,15} of size 1920
   {8,15} of size 1920
   {4,15} of size 1920
   {8,15} of size 1920
   {4,15} of size 1920
   {15,15} of size 1920
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {5}*10
   5-fold quotients : {3}*6
Covers (Minimal Covers in Boldface) :
   2-fold covers : {30}*60
   3-fold covers : {45}*90
   4-fold covers : {60}*120
   5-fold covers : {75}*150
   6-fold covers : {90}*180
   7-fold covers : {105}*210
   8-fold covers : {120}*240
   9-fold covers : {135}*270
   10-fold covers : {150}*300
   11-fold covers : {165}*330
   12-fold covers : {180}*360
   13-fold covers : {195}*390
   14-fold covers : {210}*420
   15-fold covers : {225}*450
   16-fold covers : {240}*480
   17-fold covers : {255}*510
   18-fold covers : {270}*540
   19-fold covers : {285}*570
   20-fold covers : {300}*600
   21-fold covers : {315}*630
   22-fold covers : {330}*660
   23-fold covers : {345}*690
   24-fold covers : {360}*720
   25-fold covers : {375}*750
   26-fold covers : {390}*780
   27-fold covers : {405}*810
   28-fold covers : {420}*840
   29-fold covers : {435}*870
   30-fold covers : {450}*900
   31-fold covers : {465}*930
   32-fold covers : {480}*960
   33-fold covers : {495}*990
   34-fold covers : {510}*1020
   35-fold covers : {525}*1050
   36-fold covers : {540}*1080
   37-fold covers : {555}*1110
   38-fold covers : {570}*1140
   39-fold covers : {585}*1170
   40-fold covers : {600}*1200
   41-fold covers : {615}*1230
   42-fold covers : {630}*1260
   43-fold covers : {645}*1290
   44-fold covers : {660}*1320
   45-fold covers : {675}*1350
   46-fold covers : {690}*1380
   47-fold covers : {705}*1410
   48-fold covers : {720}*1440
   49-fold covers : {735}*1470
   50-fold covers : {750}*1500
   51-fold covers : {765}*1530
   52-fold covers : {780}*1560
   53-fold covers : {795}*1590
   54-fold covers : {810}*1620
   55-fold covers : {825}*1650
   56-fold covers : {840}*1680
   57-fold covers : {855}*1710
   58-fold covers : {870}*1740
   59-fold covers : {885}*1770
   60-fold covers : {900}*1800
   61-fold covers : {915}*1830
   62-fold covers : {930}*1860
   63-fold covers : {945}*1890
   64-fold covers : {960}*1920
   65-fold covers : {975}*1950
   66-fold covers : {990}*1980
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(15)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);
s1 := Sym(15)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
poly := sub<Sym(15)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope