include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {15,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {15,10}*1500c
if this polytope has a name.
Group : SmallGroup(1500,37)
Rank : 3
Schlafli Type : {15,10}
Number of vertices, edges, etc : 75, 375, 50
Order of s0s1s2 : 30
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {3,10}*300
125-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6, 35)( 7, 34)( 8, 33)( 9, 32)( 10, 31)( 11, 61)
( 12, 65)( 13, 64)( 14, 63)( 15, 62)( 16, 94)( 17, 93)( 18, 92)( 19, 91)
( 20, 95)( 21,124)( 22,123)( 23,122)( 24,121)( 25,125)( 26,101)( 27,105)
( 28,104)( 29,103)( 30,102)( 37, 40)( 38, 39)( 41, 69)( 42, 68)( 43, 67)
( 44, 66)( 45, 70)( 46, 99)( 47, 98)( 48, 97)( 49, 96)( 50,100)( 51, 76)
( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 56,110)( 57,109)( 58,108)( 59,107)
( 60,106)( 71, 74)( 72, 73)( 81, 85)( 82, 84)( 86,111)( 87,115)( 88,114)
( 89,113)( 90,112)(116,119)(117,118);;
s1 := ( 1, 3)( 4, 5)( 7, 10)( 8, 9)( 11, 14)( 12, 13)( 16, 17)( 18, 20)
( 21, 25)( 22, 24)( 26,114)( 27,113)( 28,112)( 29,111)( 30,115)( 31,117)
( 32,116)( 33,120)( 34,119)( 35,118)( 36,125)( 37,124)( 38,123)( 39,122)
( 40,121)( 41,103)( 42,102)( 43,101)( 44,105)( 45,104)( 46,106)( 47,110)
( 48,109)( 49,108)( 50,107)( 51, 96)( 52,100)( 53, 99)( 54, 98)( 55, 97)
( 56, 79)( 57, 78)( 58, 77)( 59, 76)( 60, 80)( 61, 82)( 62, 81)( 63, 85)
( 64, 84)( 65, 83)( 66, 90)( 67, 89)( 68, 88)( 69, 87)( 70, 86)( 71, 93)
( 72, 92)( 73, 91)( 74, 95)( 75, 94);;
s2 := ( 1, 36)( 2, 37)( 3, 38)( 4, 39)( 5, 40)( 6, 31)( 7, 32)( 8, 33)
( 9, 34)( 10, 35)( 11, 26)( 12, 27)( 13, 28)( 14, 29)( 15, 30)( 16, 46)
( 17, 47)( 18, 48)( 19, 49)( 20, 50)( 21, 41)( 22, 42)( 23, 43)( 24, 44)
( 25, 45)( 51,111)( 52,112)( 53,113)( 54,114)( 55,115)( 56,106)( 57,107)
( 58,108)( 59,109)( 60,110)( 61,101)( 62,102)( 63,103)( 64,104)( 65,105)
( 66,121)( 67,122)( 68,123)( 69,124)( 70,125)( 71,116)( 72,117)( 73,118)
( 74,119)( 75,120)( 76, 86)( 77, 87)( 78, 88)( 79, 89)( 80, 90)( 91, 96)
( 92, 97)( 93, 98)( 94, 99)( 95,100);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s0*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(125)!( 2, 5)( 3, 4)( 6, 35)( 7, 34)( 8, 33)( 9, 32)( 10, 31)
( 11, 61)( 12, 65)( 13, 64)( 14, 63)( 15, 62)( 16, 94)( 17, 93)( 18, 92)
( 19, 91)( 20, 95)( 21,124)( 22,123)( 23,122)( 24,121)( 25,125)( 26,101)
( 27,105)( 28,104)( 29,103)( 30,102)( 37, 40)( 38, 39)( 41, 69)( 42, 68)
( 43, 67)( 44, 66)( 45, 70)( 46, 99)( 47, 98)( 48, 97)( 49, 96)( 50,100)
( 51, 76)( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 56,110)( 57,109)( 58,108)
( 59,107)( 60,106)( 71, 74)( 72, 73)( 81, 85)( 82, 84)( 86,111)( 87,115)
( 88,114)( 89,113)( 90,112)(116,119)(117,118);
s1 := Sym(125)!( 1, 3)( 4, 5)( 7, 10)( 8, 9)( 11, 14)( 12, 13)( 16, 17)
( 18, 20)( 21, 25)( 22, 24)( 26,114)( 27,113)( 28,112)( 29,111)( 30,115)
( 31,117)( 32,116)( 33,120)( 34,119)( 35,118)( 36,125)( 37,124)( 38,123)
( 39,122)( 40,121)( 41,103)( 42,102)( 43,101)( 44,105)( 45,104)( 46,106)
( 47,110)( 48,109)( 49,108)( 50,107)( 51, 96)( 52,100)( 53, 99)( 54, 98)
( 55, 97)( 56, 79)( 57, 78)( 58, 77)( 59, 76)( 60, 80)( 61, 82)( 62, 81)
( 63, 85)( 64, 84)( 65, 83)( 66, 90)( 67, 89)( 68, 88)( 69, 87)( 70, 86)
( 71, 93)( 72, 92)( 73, 91)( 74, 95)( 75, 94);
s2 := Sym(125)!( 1, 36)( 2, 37)( 3, 38)( 4, 39)( 5, 40)( 6, 31)( 7, 32)
( 8, 33)( 9, 34)( 10, 35)( 11, 26)( 12, 27)( 13, 28)( 14, 29)( 15, 30)
( 16, 46)( 17, 47)( 18, 48)( 19, 49)( 20, 50)( 21, 41)( 22, 42)( 23, 43)
( 24, 44)( 25, 45)( 51,111)( 52,112)( 53,113)( 54,114)( 55,115)( 56,106)
( 57,107)( 58,108)( 59,109)( 60,110)( 61,101)( 62,102)( 63,103)( 64,104)
( 65,105)( 66,121)( 67,122)( 68,123)( 69,124)( 70,125)( 71,116)( 72,117)
( 73,118)( 74,119)( 75,120)( 76, 86)( 77, 87)( 78, 88)( 79, 89)( 80, 90)
( 91, 96)( 92, 97)( 93, 98)( 94, 99)( 95,100);
poly := sub<Sym(125)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s0*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope