include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,15}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,15}*1500a
if this polytope has a name.
Group : SmallGroup(1500,37)
Rank : 3
Schlafli Type : {10,15}
Number of vertices, edges, etc : 50, 375, 75
Order of s0s1s2 : 30
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {10,3}*300
125-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 6, 23)( 7, 24)( 8, 25)( 9, 21)( 10, 22)( 11, 20)( 12, 16)( 13, 17)
( 14, 18)( 15, 19)( 26,101)( 27,102)( 28,103)( 29,104)( 30,105)( 31,123)
( 32,124)( 33,125)( 34,121)( 35,122)( 36,120)( 37,116)( 38,117)( 39,118)
( 40,119)( 41,112)( 42,113)( 43,114)( 44,115)( 45,111)( 46,109)( 47,110)
( 48,106)( 49,107)( 50,108)( 51, 76)( 52, 77)( 53, 78)( 54, 79)( 55, 80)
( 56, 98)( 57, 99)( 58,100)( 59, 96)( 60, 97)( 61, 95)( 62, 91)( 63, 92)
( 64, 93)( 65, 94)( 66, 87)( 67, 88)( 68, 89)( 69, 90)( 70, 86)( 71, 84)
( 72, 85)( 73, 81)( 74, 82)( 75, 83);;
s1 := ( 1, 26)( 2, 30)( 3, 29)( 4, 28)( 5, 27)( 6, 57)( 7, 56)( 8, 60)
( 9, 59)( 10, 58)( 11, 90)( 12, 89)( 13, 88)( 14, 87)( 15, 86)( 16,120)
( 17,119)( 18,118)( 19,117)( 20,116)( 21, 22)( 23, 25)( 31, 32)( 33, 35)
( 36, 65)( 37, 64)( 38, 63)( 39, 62)( 40, 61)( 41, 95)( 42, 94)( 43, 93)
( 44, 92)( 45, 91)( 46,122)( 47,121)( 48,125)( 49,124)( 50,123)( 51,101)
( 52,105)( 53,104)( 54,103)( 55,102)( 66, 70)( 67, 69)( 71, 97)( 72, 96)
( 73,100)( 74, 99)( 75, 98)( 77, 80)( 78, 79)( 81,107)( 82,106)( 83,110)
( 84,109)( 85,108)(111,115)(112,114);;
s2 := ( 2, 5)( 3, 4)( 6, 9)( 7, 8)( 11, 12)( 13, 15)( 16, 20)( 17, 19)
( 21, 23)( 24, 25)( 26,112)( 27,111)( 28,115)( 29,114)( 30,113)( 31,120)
( 32,119)( 33,118)( 34,117)( 35,116)( 36,123)( 37,122)( 38,121)( 39,125)
( 40,124)( 41,101)( 42,105)( 43,104)( 44,103)( 45,102)( 46,109)( 47,108)
( 48,107)( 49,106)( 50,110)( 51, 99)( 52, 98)( 53, 97)( 54, 96)( 55,100)
( 56, 77)( 57, 76)( 58, 80)( 59, 79)( 60, 78)( 61, 85)( 62, 84)( 63, 83)
( 64, 82)( 65, 81)( 66, 88)( 67, 87)( 68, 86)( 69, 90)( 70, 89)( 71, 91)
( 72, 95)( 73, 94)( 74, 93)( 75, 92);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2,
s1*s2*s1*s0*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(125)!( 6, 23)( 7, 24)( 8, 25)( 9, 21)( 10, 22)( 11, 20)( 12, 16)
( 13, 17)( 14, 18)( 15, 19)( 26,101)( 27,102)( 28,103)( 29,104)( 30,105)
( 31,123)( 32,124)( 33,125)( 34,121)( 35,122)( 36,120)( 37,116)( 38,117)
( 39,118)( 40,119)( 41,112)( 42,113)( 43,114)( 44,115)( 45,111)( 46,109)
( 47,110)( 48,106)( 49,107)( 50,108)( 51, 76)( 52, 77)( 53, 78)( 54, 79)
( 55, 80)( 56, 98)( 57, 99)( 58,100)( 59, 96)( 60, 97)( 61, 95)( 62, 91)
( 63, 92)( 64, 93)( 65, 94)( 66, 87)( 67, 88)( 68, 89)( 69, 90)( 70, 86)
( 71, 84)( 72, 85)( 73, 81)( 74, 82)( 75, 83);
s1 := Sym(125)!( 1, 26)( 2, 30)( 3, 29)( 4, 28)( 5, 27)( 6, 57)( 7, 56)
( 8, 60)( 9, 59)( 10, 58)( 11, 90)( 12, 89)( 13, 88)( 14, 87)( 15, 86)
( 16,120)( 17,119)( 18,118)( 19,117)( 20,116)( 21, 22)( 23, 25)( 31, 32)
( 33, 35)( 36, 65)( 37, 64)( 38, 63)( 39, 62)( 40, 61)( 41, 95)( 42, 94)
( 43, 93)( 44, 92)( 45, 91)( 46,122)( 47,121)( 48,125)( 49,124)( 50,123)
( 51,101)( 52,105)( 53,104)( 54,103)( 55,102)( 66, 70)( 67, 69)( 71, 97)
( 72, 96)( 73,100)( 74, 99)( 75, 98)( 77, 80)( 78, 79)( 81,107)( 82,106)
( 83,110)( 84,109)( 85,108)(111,115)(112,114);
s2 := Sym(125)!( 2, 5)( 3, 4)( 6, 9)( 7, 8)( 11, 12)( 13, 15)( 16, 20)
( 17, 19)( 21, 23)( 24, 25)( 26,112)( 27,111)( 28,115)( 29,114)( 30,113)
( 31,120)( 32,119)( 33,118)( 34,117)( 35,116)( 36,123)( 37,122)( 38,121)
( 39,125)( 40,124)( 41,101)( 42,105)( 43,104)( 44,103)( 45,102)( 46,109)
( 47,108)( 48,107)( 49,106)( 50,110)( 51, 99)( 52, 98)( 53, 97)( 54, 96)
( 55,100)( 56, 77)( 57, 76)( 58, 80)( 59, 79)( 60, 78)( 61, 85)( 62, 84)
( 63, 83)( 64, 82)( 65, 81)( 66, 88)( 67, 87)( 68, 86)( 69, 90)( 70, 89)
( 71, 91)( 72, 95)( 73, 94)( 74, 93)( 75, 92);
poly := sub<Sym(125)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2,
s1*s2*s1*s0*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2 >;
References : None.
to this polytope